Что такое воздух и из чего он состоит? Химический состав воздуха и его гигиеническое значение

нормальный газовый состав

естественные примеси

прочие вредные примеси

Азот 78,08 %

Кислород 20,95 %

Аргон 0,9325 %

Диоксид углерода 0,003%

Неон 0,0018 %

Гелий 0.0005 %

Радон 6*10 -18

Криптон 0,000108 %

Водород 0,00005 %

Ксенон 0,000008 %

Озон 0,000001 %

водород 0,00005 %

метан 0,00022 %

закись азота 0,085мг/м 3

аммиак 0,005 мг/м 3

водяные пары

пыль 0,15 мг/м 3

сажа 0,05 мг/м 3

окись углерода 1 мг/м 3

сернистый газ 0,05 мг/м 3

фтор 0,01 мг/м 3

бензопирен 0,1мкг/100м 3

В санитарной практике чаще всего приходиться следить за состоянием воздуха в закрытых помещениях. Химический состав атмосферного в результате круговорота воздушных течений бывает постоянен. Изменение могут наблюдаться только в атмосфере крупных промышленных центров за счет поступления в воздух газовых выбросов фабрик и заводов и выхлопных газов автотранспорта. Эти загрязнения могут вредно влиять не только на здоровье людей, но и на окружающую растительность здания и пр.

В России принимаются энергичные меры борьбы с загрязнением атмосферы городов. Закон о санитарной охране атмосферного воздуха предусматривает проведение ряда профилактических мероприятий: установление санитарно-защитных разрывов между жилой зоной и промышленными предприятиями, вынос последних за черту города, устройство очистных сооружений, увеличение высоты дымовых труб, теплофикацию и газификацию городов, борьбу с выхлопными газами автотранспорта и т. п.

В жилых помещениях основной причиной изменения химических свойств воздуха является скопление людей и некоторые жизненные процессы, связанные с ними. Выдыхаемый воздух содержит на 25% меньше кислорода и в 100 раз больше угольной кислоты, чем вдыхаемый атмосферный воздух. Следовательно, при большом скоплении людей и недостаточной вентиляции в какой-то степени может измениться химический состав комнатного воздуха, особенно если принять во внимание возможность загрязнения воздуха и другими путями. К ним относятся: прежде всего, продукты гниения и разложения, выделяемые неопрятно содержащейся кожей, грязной одеждой, обувью и кишечные газы. Затем следуют примеси, поступающие в воздух в результате неисправности приборов отопления, газовой сети, при курении, приготовлении пищи и т. д.

Состав атмосферного и выдыхаемого воздуха (в объёмных %)

Наблюдающиеся изменения в содержании отдельных газов могут рассматриваться как косвенный показатель общего ухудшения санитарного состояния воздуха в зависимости от присутствия людей. Контроль за этими изменениями дает возможность оценить эффективность действия вентиляционных установок, определить достаточность воздушного куба в помещениях, правильность режима эксплуатации последних и т. д.

Содержание углекислого газа в атмосферном воздухе около 0,04% с весьма незначительными колебаниями. Это объясняется тем, что поступающий в атмосферный воздух из подземных скоплений и других источников (выделения людей, животных и растений, сжигание топлива) углекислый газ не накапливается в воздухе, а удаляется из него осадками. Один литр дождевой воды содержит около 1-2 мл углекислого газа, при образовании углекислых солей морской воды, а также разлагается, содержащими хлорофилл растениями.

Содержимое двуокиси углерода в воздухе закрытых, недостаточно вентилируемых помещений повышается, вследствие выделения её людьми при дыхании. Повышение содержания углекислого газа может встречаться также в шахтах, канализационных колодцах, бродильных отделениях пивоваренных заводов и т. д.

Однако неприятное самочувствие и болезненные проявления у людей при пребывании в закрытом помещении возникают, прежде всего, вследствие повышения температурного режима и влажности воздуха, а не вследствие токсического действия углекислого газа. Установление предельно допустимого содержания углекислого газа (0,1%) объясняется тем, что в недостаточно вентилируемых помещениях наряду с ростом содержания углекислого газа, выделяемого людьми при дыхании 16,5-18% (или 22,6 л.) возрастает содержание в воздухе и других продуктов жизнедеятельности людей: кишечные газы, продукты распада кожных выделений и т. д.

Чем в наиболее худших антисанитарных условиях содержится жилое помещение, чем хуже помещение вентилируется и тем, следовательно, больше в нём этих газов, тем более вредное влияние они оказывают на здоровье человека. Косвенным показателем наличия их в воздухе является наличие в нём углекислоты, увеличивающееся одновременно и параллельно с увеличением в нём количества этих пахучих газов. Установлено, что даже при самых антисанитарных условиях и чрезмерном загрязнении воздуха жилых помещении количество углекислоты в воздухе может увеличиваться до 1% и только в герметически закрытых помещениях количество углекислоты может увеличиваться до 3% и более. Опасность значительного накопления углекислоты в воздухе закрытых помещений заключается в том, что она одновременно сопровождается уменьшением в воздухе процентного содержания кислорода.

Для того, чтобы предотвратить изменения физико-химических свойств воздуха необходимо осуществлять воздухообмен. При расчёте необходимого объёма воздуха на человека в час принято исходить из количества выделяемой в час углекислоты и предельно-допустимой концентрации её в воздухе помещении. Расчёт делается по формуле:

V d = ── , где:

V d - объём воздуха, необходимого человеку

C - количество углекислоты, выделяемое в час взрослым (22,6 л.) . или ребёнком (4-12 л.).

р - предельно-допустимое содержание углекислоты воздуха помещения

(0,1% или 1л./м 3)

Например: для ребёнка старшего школьного возраста необходимо объём воздуха 20 м З

V= _─────── = ── = 20(м З ).

0,1-0,04(л/м 3) 0,6

Методика определения СО 2 по Винокурову .

Принцип метода работы основан, на способности углекислого газа взаимодействовать с содой, переводя карбонаты в бикарбонаты, при этом, снижается титр раствора соды. Оставшийся раствор карбоната натрия оттитровывается раствором соляной кислоты.

1.Отбор пробы воздуха.

Проба воздуха отбирается в колбу закрытую резиновой пробкой с двумя отверстиями. Отверстия в пробке закрываются стеклянными палочками. Объём колбы до пробки предварительно точно измеряется(лаборантами кафедры и обозначается на колбе).

Пробу воздуха отбирают следующим образом: наполняют колбу точно установленного объёма водой, а затем там, где надо взять пробу воздуха для исследования, выливают воду из колбы через отверстия в пробке вследствие чего в колбу входит подлежащий анализу воздух. Колба герметически закрывается и переносится для анализа в учебную комнату.

2.Анализ исследуемого воздуха.

Вынув из пробки, закрывающей колбу стеклянные палочки, наливают в колбу 10 мл. раствора соды (0,02%) не выдувая содержимое из пипетки и 2-3 капли фенолфталеина. Отверстия в пробке закрываются стеклянными палочками, слегка придерживая резиновую пробку в течении часа, колбу встряхивают через каждые 10 минут.

Следующий этап работы - приведение объема воздуха к нормальным условиям / t O ° С и давление 760 мм.рт.ст /.

Объем воздуха изменяется в зависимости от температуры и давления, поэтому для получения необходимых результатов необходимо привести забранный объем воздуха, для исследования, к нормальным условиям.

Для этого записывают температуру исследуемого воздуха, барометрическое давление, объем колбы и на основании этих показателей рассчитывают истинный объем воздуха, взятого для исследования, с приведением его к объему при температуре 0 ° и атмосферном давлении 760 мм.рт.ст. Это производится по формуле Бойля-Мариотта или Гей-Люссака.

V о 760 = ─────── ,где:

(1+α ×t)×760 V о 760 - истинный объем воздуха

V 1 - объем колбы / отмечен на колбе/

α - коэффициент расширения воздуха (равен 0,003687)

t- температура воздуха в момент взятия пробы

β- барометрическое давление в мм.рт.ст. в момент взятия пробы

Для ускорения расчетов рекомендуется пользоваться таблицей для приведений воздуха к нормальной температуре и к нормальному давлению, таблица прилагается, где (1+α×t) температурная поправка для данной температуры, а β/760- барометрическая поправка.

Пример: объем колбы - 645 мл., температура воздуха - 20°, барометрическое давление - 751 мм.рт.ст.

Находим из таблицы температурную поправку равную 0,9882, и барометрическую поправку равную 1,0733. Подставляем полученные данные в формулу:

V 760 = ─────── = 594

Далее переходим к обработке пробы: для чего из резиновой пробки вынимаем стеклянные палочки и оставшийся раствор соды титруем из бюретки растворомсоляной кислоты НСℓ 0,005н, до исчезновения розовой окраски индикатора. Количество израсходованной соляной кислоты записывают в тетрадь, как первый титр соды. Для определения количества соды, которое пошло на реакцию с углекислым газом необходимо определить снижение титра соды. Для этого, вынув резиновую пробку из колбы, наливаем в колбу 10 мл. соды. Раствор снова розовеет. Титруем второй раз, до обесцвечивания, 0,005н раствором НСℓ из бюретки. Разница между первым и вторым титрованием есть снижение тира. Допустим, что снижение титра составило 2,8 мл.

Для того чтобы от мл. раствора перейти к единицам объема двуокиси углерода рассуждаем так:

если 1мл. 0.005н соляной кислоты эквивалентен 0,22гр СО 2 , то следовательно взятая проба содержит СО 2:

0,22×2,8 = 0,6616мг.

Известно, что 1мг СО 2 , при 0° или 760 мм.рт.ст. занимает объем равный 0,509 мл. поэтому в данном примере объем СО 2 во взятой пробе будет соответствовать:

0,661 × 0,509 = 0,313 мл.

0,313мл.- х % 0.313*100

СО 2 = ────── = 0,05%

Микробная загрязненность воздуха имеет большое эпидемиологическое значение, т.к. через воздух (аэрогенно) могут передаваться от больного к здоровому человеку возбудители многих инфекционных заболеваний -натуральной и ветряной оспы, чумы, сибирской язвы, туляремии, туберкулеза, коклюша, дифтерии, кори, скарлатины, эпидемического паротита, гриппа, пневмонии, менингита и др.

Микрофлора атмосферного воздуха представлена в основном сапрофитными кокками, споровыми бактериями, грибами и плесенями. В воздухе закрытых помещений накапливаются микроорганизмы, выделяемые людьми через дыхательные пути (стрептококки, стафилококки и др.). Чем больше скученность людей в помещении, тем выше общая обсемененность микроорганизмами и особенно стрептококками. В воздухе нежилых помещений стрептококки отсутствуют.

Основы учения об инфекциях, передаваемых воздушным путем, были заложены русским гигиенистом П.Н. Лащенковым, который заведовал кафедрой гигиены Томского императорского университета с 1905 по 1925 гг. В 1897 г. он экспериментально доказал, что передача инфекции через воздух может произойти двумя путями:

    капельным - при вдыхании мельчайших капелек слюны, мокроты, слизи, выделяемых больными или бациллоносителями во время разговора, кашля, чихания;

    пылевым - через взвешенную в воздухе пыль, содержащую патогенные микроорганизмы.

Некоторые бактериальные формы, поступающие с воздухом в дыхательные пути, обладают способностью сенсибилизировать организм человека, причем даже погибшие микроорганизмы представляют опасность как аллергены. Описаны случаи развития аллергических реакций при поступлении в дыхательные пути бактерий-сапрофитов, в частности, Вас. Prodegiosum, грибов Cladosporium, Mucor, Penicillium и др. Такие микроорганизмы, как сарцина, псевдодифтерийная палочка также являются аллергенами.

Фазы микробного аэрозоля и их эпидемиологическое значение

Микроорганизмы находятся в воздухе в виде микробного аэрозоля. Аэрозоль - это система, состоящая из жидких или твердых частиц (дисперсной фазы), взвешенных в газообразной (дисперсионной) среде. В микробном аэрозоле дисперсной фазой являются капельки жидкости или твердые частицы, содержащие микроорганизмы, а дисперсионной средой - воздух.

Микробный аэрозоль, в частности, образуется при дыхании человека, особенно при форсированном выдохе - кашле, чихании, пении, громком разговоре. Установлено, что во время чихания образуется до сорока тысяч мелких капелек, содержащих микроорганизмы.

Различают три фазы микробного аэрозоля:

- крупноядерную жидкую фазу с диаметром капель более 100 мкм;

- мелкоядерную жидкую фазу с диаметром капель менее 100 мкм;

- фазу бактериальной пыли с размером частиц в пределах от 1 до 100 мкм.

Капли крупноядерной фазы под действием силы тяжести быстро оседают, поэтому дальность их распространения невелика, а длительность пребывания в воздухе измеряется секундами.

Капли мелкоядерной фазы длительно удерживаются в воздухе помещений и легко перемещаются с вертикальными и горизонтальными потоками воздуха; они высыхают прежде, чем успеют осесть. Остатки этих капель, так называемые капельные ядрышки, внутри которых могут находиться патогенные микроорганизмы, длительное время витают в воздухе.

Капли микробного аэрозоля независимо от их размера в дальнейшем оседают на окружающих предметах, подсыхают и превращаются в так называемую бактериальную пыль, которая легко увлекается потоками воздуха, особенно при движении людей в помещениях, при их уборке, перестилании постелей и др. Установлено, что даже при влажной уборке число бактерий в воздухе повышается на 50-75 %, а при сухой - на 400-500 %. Образование бактериальной пыли может происходить за счет высыхания мокроты, слюны, слизи, гнойного отделяемого, испражнений и других выделений больных. Наличие в помещении пыли, доступной для непосредственного обсеменения ее капельками бактериального аэрозоля, способствует образованию подвижной бактериальной пыли.

Эпидемиологическое значение фазы бактериальной пыли связано с теми видами микроорганизмов, которые не теряют жизнеспособности при высыхании. Устойчивость патогенных микроорганизмов к высушиванию весьма различна. Известно, что в крупноядерной фазе аэрозоля могут сохраняться даже такие малоустойчивые к внешним воздействиям микроорганизмы, как вирусы гриппа, кори, ветряной оспы, т.к. внутри капли имеется достаточное количество влаги, необходимое для сохранения жизнеспособности бактерий; в мелкоядерной фазе выживают палочки дифтерии, стрептококки, менингококки и др. В фазе бактериальной пыли могут выживать лишь особо устойчивые виды микроорганизмов - микобактерии туберкулеза, спорообразующие бактерии, некоторые виды грибов.

Воздушные потоки в помещении являются существенным фактором, влияющим на распространение микроорганизмов. Горизонтальные потоки воздуха способствуют распространению микробов в пределах помещения, а при наличии общего коридора - в пределах этажа. Вертикальные потоки, обусловленные конвекцией и механической вентиляцией (например, в лестнично-лифтовых пространствах), переносят микробов на верхние этажи.

Санитарно-гигиенические исследования микробного загрязнения воздушной среды

Воздух необходим всем живым организмам: животным для дыхания, а растениям - для питания. К тому же воздух защищает от губительного ультрафиолетового излучения Солнца. Основные составляющие воздуха - азот и кислород. В воздухе есть также небольшие примеси благородных газов, углекислого газа и некоторое количество твердых частиц - копоти, пыли. Воздух нужен всем животным для дыхания. Около 21% воздуха составляет кислород. Молекула кислорода (О 2) состоит из двух связанных атомов кислорода.

Состав воздуха

Процентное соотношение различных га­зов в воздухе слегка изменяется в зависимости от места, времени года и суток. Азот и кислород - основные компоненты воздуха. Один процент воздуха составляют благородные газы, углекислой газ, водяной пар и загрязнения, например диоксид азота. Входящие в состав воздуха газы можно разделить путем фракционной перегонки . Воздух охлаждается до тех пор, пока газы не перейдут в жидкое состояние (см. статью «Твёрдые тела, жидкости и газы «). Пос­ле этого жидкая смесь нагревается. Температура кипения у каждой жидкости своя, и образующиеся при кипении газы можно собирать от­дельно. Кислород, азот и углекислый газ постоянно по­падают из воздуха в живые организмы и возвращают­ся в воздух, т.е. происходит круговорот. Животные вдыхают кислород воздуха и выдыхают углекислый газ.

Кислород

Азот

Более 78% воздуха составляет азот. Бел­ки, из которых построены живые организ­мы, также содержат азот. Главное промышленное применение азота - производство аммиака , необходимого для удобрений. Азот для этого соединяют с водородом . Азот накачивается в упаковки для мяса или рыбы, т.к. при контакте с обычным воздухом продукты окисляются и портятся Предназначенные для пересадки человеческие органы хранятся в жидком азоте, потому что он холодный и химически инертный. Молекула азота (N 2) состоит из двух связанных атомов азота.

Благородные газы

Благородные газы - это 6 элементов 8-й группы периодической таблицы. Они чрезвычайно инертны химически. Только они существуют в виде от­дельных атомов, не образующих молекулы. Из-за их пассивности некоторыми из них наполняют лампы. Ксенон практически не используется человеком, зато аргон накачивают в электролампочки, а крип­тоном наполняют люминесцентные лампы. Неон вспыхивает красно-оранжевым светом при прохождении электрического разряда. Он используется в натриевых уличных лампах и неоновых лампах. Радон радиоактивен. Он образуется в результате распада металла радия. Никакие соединения гелия науке неизвестны, и гелий считается абсолютно инертным. Его плотность в 7 раз меньше плотности воздуха, поэтому им наполняют дирижабли. Наполненные гелием воздушные шары оснащаются научной аппаратурой и запускаются в верхние слои атмосферы.

Парниковый эффект

Так называется наблюдающееся сейчас повышение содержания углекислого газа в атмосфере и вызванное этим глобальное потепление , т.е. повышение среднегодовых температур во всем мире. Углекислый газ не дает теплу покидать Землю, так же как стекло сохраняет высокую внутри парника. Поскольку углекислого газа в воздухе становится все больше, все больше тепла задерживается в атмосфере. Даже небольшое потепление вызывает повышение уровня Мирового океана, перемену ветров и таяние части льда у полюсов. Ученые считают, что если содержание углекислого газа будет расти так же быстро, то за 50 лет средняя темпера­тура может возрасти на величину от 1,5°С до 4°С.

ВОЗДУХ
смесь газов, которая составляет атмосферу Земли, простирающуюся до высоты 1000-1200 км. До высоты ок. 11 км состав атмосферы остается неизменным. Этот слой называется тропосферой. В нем разыгрывается большинство метеорологических процессов, определяющих погоду. Здесь происходит интенсивная циркуляция воздуха, возникают ветры, бури и ураганы, велика турбулентность. В тропосфере сосредоточены почти весь находящийся в атмосфере водяной пар и почти вся воздушная пыль, а потому именно здесь по большей части происходит образование облаков. Над тропосферой, простираясь примерно на 50 км, располагается слой стратосферы. Здесь огромные потоки сравнительно спокойного воздуха циркулируют на больших расстояниях без значительных возмущений. В нижней части стратосферы образуются редкие облака, состоящие из мельчайших ледяных кристалликов. Над стратосферой до высоты ок. 80 км простирается мезосфера - слой, в котором достигается самая низкая в естественных условиях температура воздуха, составляющая примерно -110° C (160 К). Далее до высоты ок. 720 км следует слой термосферы. Здесь молекулы воздуха движутся столь быстро, что если бы плотность воздуха была такой же, как и на уровне моря (а не в миллиарды раз меньшей), то его температура была бы близка к 3000° C. Самый верхний слой атмосферы - экзосфера. В ней воздух крайне разрежен и столкновения молекул друг с другом столь редки, что большинство из них движутся по простым баллистическим траекториям, как пуля, а некоторая их часть - по эллиптическим орбитам, подобно искусственным спутникам Земли. Какая-то доля молекул, в основном водорода и гелия, достигает скоростей, при которых возможен выход за пределы действия сил земного тяготения, и рассеивается в пространстве между Землей и Луной (см. также АТМОСФЕРА). Изо всех разнообразных свойств воздуха важнее всего то, что он необходим для жизни на Земле. Существование людей и животных было бы невозможно без кислорода. Поскольку же для дыхания нужен кислород в разбавленном виде, наличие других газов в воздухе тоже имеет жизненно важное значение.
Состав. На уровне моря и в пределах тропосферы газовый состав воздуха (в об. %) таков: азот - 78,08%, кислород - 20,95%, аргон - 0,93%, углекислый газ (диоксид углерода) - 0,034%, водород - 5 x 10-5 %; кроме того, имеются "следовые" количества так называемых благородных (или инертных, редких) газов: неона - 1,8 x 10-3 %, гелия - 5,24 x 10-4 %, криптона - 1 x 10-4 % и ксенона - 8 x 10-6 %. Воздух в тропосфере содержит также переменные количества водяного пара; его влажность зависит от температурных условий и высоты. В нижних слоях атмосферы во взвешенном состоянии содержатся переменные количества пыли и золы, образующихся, например, в процессах горения и при извержении вулканов. С присутствием в воздухе таких аэрозольных частиц связаны яркие краски солнечных восходов и закатов, обусловленные рассеянием на них солнечных лучей.

РЕКТИФИКАЦИОННОЕ РАЗДЕЛЕНИЕ ВОЗДУХА


Различные газы, входящие в состав атмосферного воздуха, можно преобразовать в жидкое и даже твердое состояние, если соответственно повысить давление и понизить температуру. Люди нашли для воздуха многочисленные и разнообразные применения. Масштабы применения газовых компонентов атмосферного воздуха в науке и технике, промышленности и быту во много раз расширились после того, как был разработан способ разделения воздушной смеси на отдельные компоненты. Этот способ состоит в том, что воздух сначала преобразуется в жидкое состояние, а затем подвергается дистилляции или ректификации (фракционированию) точно так же, как нефть-сырец разделяется на различные нефтепродукты. Впервые ожижение воздуха успешно осуществили в 1883 З.Вроблевский и К.Ольшевский. Для промышленного применения ректификационного разделения воздуха важны два обстоятельства. Во-первых, газы, входящие в состав воздуха, образуют физическую смесь, а не химическое соединение, и, во-вторых, точки кипения разных компонентов воздуха существенно различаются. Технические средства, созданные с учетом того и другого, обеспечивают практически полное разделение основных компонентов воздуха, причем с высокой степенью чистоты каждого компонента. Процесс разделения воздуха протекает в три этапа: 1) подготовка, или очистка, воздуха, 2) преобразование очищенного воздуха в жидкую фазу (ожижение) и 3) ректификационное разделение жидкой смеси на отдельные газы.




Удаление примесей. Прежде чем воздух поступит на вход ожижительной и ректификационной секций воздухоразделительной установки, из него удаляются все примеси, которые либо взвешены в атмосферном воздухе в виде твердых частиц, либо легко могут превратиться в твердые при понижении температуры. В противном случае неизбежна быстрая закупорка узких каналов оборудования. К таким посторонним примесям относятся водяной пар, пыль, дым и пары других веществ, а также углекислый газ. Основная часть этих примесей задерживается масло- и влагоуловителями, как правило, после компрессорного сжатия. Осушка воздуха после сжатия более предпочтительна, так как в этом случае меньше воды приходится удалять в виде пара, поскольку при сжатии он большей частью превращается в жидкость. Дальнейшая сушка воздуха производится пропусканием его через адсорберы с активированным оксидом алюминия или силикагелем (частично дегидратированным диоксидом кремния). Углекислый газ можно удалять химическим путем за счет реакции с гидроксидом калия (едким кали) или натрия (едким натром). Однако эти химикаты быстро расходуются и требуют частого пополнения. На крупных воздухоразделительных установках используются теплообменные аппараты, в которых удаляются одновременно углекислый газ и водяной пар, а также охлаждается воздух, поступающий на вход системы. Легкозамораживаемые газы оседают в твердом виде на металлических поверхностях теплообменников, которые поддерживаются при очень низких температурах потоком отделенных газов, проходящим по их внутренним каналам. Систему периодически очищают от накопившихся примесей, обращая поток газов в теплообменнике.
Ожижение. Очищенный воздух поступает в секцию ожижения и охлаждается в системе механической рефрижерации, пока основная его часть не превратится в жидкость. В зависимости от давления, до которого воздух был сжат первоначально, его температура здесь снижается до примерно 100 К. Давления цикла находятся в пределах от 0,6 до 20 МПа. При охлаждении используется холод отделенных ранее газов, поступающих из ректификационной секции. В оптимально сконструированном теплообменнике холод отделенных газов практически полностью передается входящему воздуху. На некоторых установках, в частности таких, где часть отделенных газов отбирается в жидком виде, для предварительного охлаждения до примерно -40° С (230 К) предусматриваются теплообменники с фреоном или метилхлоридом. При более низких температурах, необходимых для ожижения воздуха, охлаждающей средой служит либо входящий воздух, либо отделенный азот. Этот газ, сжатый до определенного давления, приводит в движение расширительную машину, или детандер (обращенный компрессор). Расширяясь, газ перемещает поршень, который через коленчатый вал приводит во вращение электрогенератор, выполняющий функцию "тормоза". Поскольку газ при расширении в детандере совершает работу, его теплосодержание и температура понижаются. При первом пуске установки необходимо сначала охладить ее до рабочей температуры, а для этого требуется больше холода, чем в установившемся рабочем режиме (захолаживание установки). Охлаждение можно также осуществлять за счет расширения сжатых газов в газообразной или жидкой фазе при истечении через дроссельный клапан. В этом случае понижение температуры обусловлено эффектом Джоуля - Томсона (дроссель-эффектом). Указанные методы охлаждения основаны на разных термодинамических эффектах, и если ввести их в цикл в правильной последовательности, то можно использовать преимущества каждого из них
(см. также
ТЕПЛОТА ;
ТЕРМОДИНАМИКА ;
ФИЗИКА НИЗКИХ ТЕМПЕРАТУР).
Секции ожижения и ректификации, работающие при криогенных температурах, требуют хорошей наружной теплоизоляции. Поэтому аппараты названных секций снабжаются кожухами, заполненными такими теплоизолирующими материалами, как минеральная вата, стекловата и пористый вулканический пепел. Конструкционные материалы теплообменников, ректификационных колонн и соединительных трубопроводов выбираются очень тщательно. Углеродистые стали при криогенных температурах становятся хрупкими. Поэтому предпочтение отдается таким материалам, как медь, бронза, латунь, нержавеющая сталь и алюминий, обнаруживающим в криогенных условиях превосходные прочностные характеристики.
Ректификация. Разделение ожиженного воздуха на составляющие производится в вертикальных цилиндрических аппаратах, называемых ректификационными колоннами. Внутри такой колонны имеется вертикальный ряд горизонтальных "тарелок" с отверстиями, через которые вниз стекает жидкость, а из нижней части колонны поднимается газ, вступая в контакт с жидкостью на тарелках. В установках для выделения с высокой степенью чистоты всех компонентов воздуха предусматривается целый ряд таких колонн. В верхнюю часть каждой колонны вводится жидкость соответствующего состава, а в нижней создаются условия, необходимые для достаточно интенсивного парообразования, так что в колонне происходит постепенное разделение смеси. В условиях нормального атмосферного давления воздух ожижается при температуре около 80 К (-190° C); состав смеси изменяется по сравнению с первоначальным. Если исходный воздух содержит приблизительно 79% азота и 21% кислорода, то в результате естественного кинетического перераспределения в жидкости будет 65% азота и 35% кислорода, а в газе над жидкостью - 87% азота и 13% кислорода. Другие составляющие газы ведут себя точно так же, независимо от соотношения между кислородом и азотом. Как правило, пар над жидкостью обогащен компонентом с более низкой температурой кипения. Соотношение между фазами зависит, конечно, от давления. По мере того как жидкость опускается, а пары поднимаются по ректификационной колонне, концентрации выделяемых компонентов в них повышаются; в конце концов, в нижней части колонны отбирается кислород "товарной" чистоты, в ее верхней части - высококачественный азот, в других точках - аргон и смесь "более редких" газов. Поскольку на воздухоразделительных установках температура, как правило, не опускается ниже точки кипения азота, неон и гелий остаются неожиженными, и их можно несконденсированными выводить в виде смеси с азотом из основной ректификационной колонны. Смеси кислорода с аргоном разделять труднее, чем смеси газов с большой разницей в температурах кипения. На крупных воздухоразделительных установках конденсационно-испарительный процесс для увеличения выхода аргона высокой чистоты дополняется химическим процессом. К смеси кислорода, азота и аргона, отбираемой из криогенной секции системы, добавляется дозированное количество газообразного водорода. Кислород вступает в реакцию с водородом в присутствии палладиевого катализатора, и образуется вода, которая удаляется в осушителях. Остающаяся газообразная смесь аргона и азота вновь охлаждается и направляется на повторную ректификацию. Редкие газы (гелий, неон, криптон и ксенон) окончательно разделяются на комбинированных установках, где конденсационно-испарительный метод сочетается с методом селективной адсорбции. В качестве адсорбента часто применяется активированный уголь, охлажденный до температуры жидкого азота.
Транспортировка и хранение. Кислород, азот и аргон транспортируются и хранятся как в жидком, так и в газообразном виде. Для криогенных жидкостей используются специальные теплоизолированные сосуды. Низкотемпературные газы хранятся под давлением до 17 МПа в стальных баллонах. Редкие газы отпускаются в стеклянных сосудах Дьюара вместимостью 1-2 л; применяются и стальные термосы.

ПРОМЫШЛЕННОЕ ПРИМЕНЕНИЕ РАЗДЕЛЕННЫХ ГАЗОВ


Вряд ли можно найти какой-либо вид промышленной деятельности, где бы не играл значительную роль тот или иной из разделенных газов воздуха. Ниже отмечаются лишь наиболее важные применения.
Кислород. В металлообработке кислород в сочетании с разными топливными газами (ацетиленом, пропаном, природным газом) применяется для резки и сварки сортовой стали высокотемпературным пламенем. Кислородно-ацетиленовое пламя используется для зачистки металлических поверхностей в целях удаления ржавчины и окалины, а также для пайки твердым припоем многих металлов. В металлургии с помощью кислорода в смеси с топливными газами производится огневая зачистка новой стали для удаления дефектов. Для ускорения процессов выплавки стали кислород в больших количествах расходуется в качестве обезуглероживающего и окислительного агента. В связи со все более широким распространением тугоплавких стекол кислород все шире применяется в технике формования стеклянных изделий. В космических ракетах кислород используется как компонент топлива. Из-за недостатка свободного места в таких летательных аппаратах он хранится в жидком виде, но перед подачей в двигатель преобразуется в газ.
См. также РАКЕТА ; КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
Азот. Благодаря своей относительной инертности азот особенно подходит для защиты продуктов, портящихся (окисляющихся) под воздействием кислорода. В пищевой промышленности к атмосфере азота часто прибегают как к средству предотвращения контакта с кислородом воздуха, способным привести к порче пищевого продукта или к потере естественного запаха. В химической, нефтяной и лакокрасочной промышленности азотная газовая подушка применяется для сохранения чистоты продукта и для предотвращения возгорания и взрыва в ходе технологической обработки. В электронной промышленности газообразным азотом продувают для вытеснения воздуха баллоны электронных ламп и корпуса полупроводниковых приборов перед их завариванием и герметизацией. Азот применяется для создания контролируемой атмосферы при отжиге и термообработке, для продувки расплавленного алюминия в целях удаления растворенного водорода и для очистки вторичного алюминия (скрапа). В электротехнике часто применяется атмосфера азота повышенного давления для поддержания высокого сопротивления изоляции и для увеличения срока службы изоляционных материалов. Пространство для расширения в маслонаполненных трансформаторах обычно заполняют азотом. Жидкий азот широко применяется для охлаждения как в промышленности, так и в научных исследованиях, в частности в экологических тестах.
См. также АЗОТ .
Аргон. В отличие от азота, который может вступать в реакцию с некоторыми металлами при повышенных температурах, аргон совершенно инертен при любых условиях. Поэтому он применяется для создания защитной атмосферы в производстве таких химически активных металлов, как титан и цирконий. Он служит также защитной средой при дуговой сварке трудносвариваемых металлов и сплавов - алюминия, бронзы, меди, монель-металла и нержавеющих сталей. Аргон хорошо подходит для заполнения (с добавкой азота) ламп накаливания. Обладая низкой теплопроводностью, аргон допускает более высокие температуры нити, что повышает световую отдачу лампы, а его значительная молекулярная масса затрудняет испарение металла из раскаленной вольфрамовой нити. В результате увеличивается срок службы лампы. Аргоном, чистым или в смеси с другими газами, заполняют также люминесцентные лампы, как осветительные (с термокатодом), так и рекламные (с холодным катодом). Кроме того, он применяется в производстве высокочистых полупроводниковых материалов (германия и кремния) для изготовления транзисторов. См. также ТРАНЗИСТОР .
Неон, криптон и ксенон. Все эти три газа обладают повышенной способностью к ионизации, т.е. они становятся электропроводящими при значительно меньших напряжениях, чем большинство других газов. Будучи ионизованы, эти газы, так же как аргон и гелий, испускают яркий свет, каждый своего цвета, а потому используются в лампах для рекламного освещения. В электронной промышленности эти редкие газы применяются для заполнения особых видов электронных ламп - стабилитронов, стартеров, фотоэлементов, тиратронов, ультрафиолетовых стерилизационных ламп и счетчиков Гейгера. В атомной промышленности ими наполняют ионизационные и пузырьковые камеры и другие устройства для исследования субатомных частиц и измерения интенсивности проникающего излучения.
Водород, гелий и углекислый газ. Эти газы в больших количествах производятся другими методами, при которых их производство обходится дешевле. Поэтому после выделения в процессе ректификационного разделения воздуха их обычно выпускают в атмосферу. См. также ВОДОРОД .

СЖАТЫЙ ВОЗДУХ


Энергию сжатого воздуха можно использовать для совершения механической работы, создания воздушного потока или воздушной подушки. Сжатый воздух легко транспортируется по трубам и шлангам, так что им можно пользоваться на значительном удалении от источника (компрессора или резервуара высокого давления) без больших потерь энергии в линии передачи.
Применение. Сжатый воздух применяется в пневматических двигателях, которые приводят в движение дрели, ручные шлифовальные и другие пневматические инструменты, в бурильных и отбойных молотках и в воздушных турбинах торпед. Воздушный поток, создаваемый сжатым воздухом, используется для транспортировки по аэрожелобам зерна, угольной пыли и других порошкообразных материалов. С помощью сжатого воздуха вентилируют шахты, здания, другие закрытые помещения, перемешивают жидкости, барботируя их в чанах, создают принудительную тягу в доменных и других печах. Сжатый воздух используется для уравновешения давления воды в водолазных костюмах, для накачки пневматических шин, для приведения в действие тормозов в поездах, для дистанционного воздействия на устройства управления технологическим оборудованием. Всего можно насчитать более 200 различных видов применения сжатого воздуха. Начало применению энергии сжатого воздуха в широких масштабах было положено в 1861, когда М. Соммейе сконструировал водно-поршневой компрессор с приводом от водяного колеса. Сжатый воздух подводился к бурильным молоткам на строительстве туннеля Мон-Сени в Альпах. Ранее вместо этого использовался пар, но отработанный пар создавал невыносимые условия для работающих в туннеле. Преимущества пневмопривода, особенно при проведении подземных горных работ, стали очевидны, и началось быстрое развитие пневмотехники.
Компрессоры. Для подачи воздуха под давлением был разработан поршневой компрессор. Поршень в таком компрессоре приводится в движение первичным двигателем. В такте всасывания воздух втягивается через входной клапан, а при обратном ходе поршня сжимается и выталкивается через другой клапан. Пружинные тарельчатые клапаны работают без механизма внешнего управления. В компрессоре одинарного действия сжатие осуществляется только по одну сторону поршня, а в компрессоре двойного действия для сжатия используются оба конца цилиндра. При сжатии воздуха его температура повышается. Такое нагревание нежелательно, поскольку ухудшаются условия работы поршня. Кроме того, если отводить тепло, выделяющееся при сжатии, то требуется меньше работы для сжатия. Поэтому компрессоры обычно имеют водяное или воздушное охлаждение. При давлениях нагнетания выше 0,4 МПа сжатие осуществляется ступенями. Два или несколько цилиндров соединяют так, что воздух с выхода одной ступени поступает на вход другой, и полное давление нагнетания достигается лишь на выходе последней. Между ступенями предусматриваются теплобменники, понижающие температуру воздуха. Шестиступенчатые компрессоры такого типа способны подавать сжатый воздух под давлением до 100 МПа. Объемные ротационные компрессоры бывают двух типов - пластинчатые и двухроторные. Пластинчатый компрессор устроен так же, как и пластинчатый пневмодвигатель (см. ниже), только ротор вращается в противоположном направлении. В двухроторном компрессоре воздух захватывается в пространстве между роторами и стенкой корпуса и вытесняется зацеплением роторов. Центробежные воздуходувки и компрессоры - это машины ротационного типа, подобные центробежным насосам. Энергия воздуха увеличивается благодаря центробежному действию вращающихся рабочих колес. Воздуходувками называют машины, сжимающие воздух до давления не более 0,3 МПа (изб.), а компрессорами - до давлений, превышающих эту величину. Для повышения давления те и другие делают многоступенчатыми. На одном валу располагают несколько рабочих колес, и воздух, переходя с одной ступени на другую, последовательно сжимается.
Пневмодвигатели. Пневмодвигателем называется машина, преобразующая в механическую работу энергию сжатого воздуха. Пневмодвигатели бывают поршневые, пластинчатые ротационные и турбинные. Сжатие воздуха производится вне двигателя, например в компрессоре.




Поршневые пневмодвигатели. Поршневой пневмодвигатель сходен с паровой машиной. Сжатый воздух поступает в клапанную коробку, и клапан, срабатывая, впускает порцию воздуха в цилиндр. Под давлением воздуха поршень совершает полезную работу через кривошипный или другой механизм, после чего отработанный воздух выпускается в атмосферу. Пневмоцикл может быть без расширения и с расширением.
Пластинчатые ротационные пневмодвигатели. Ротор такого двигателя смещен относительно осевой линии неподвижного корпуса. Прямоугольные пластины (или лопасти), установленные в радиальных пазах ротора, прижимаются к внутренней стенке корпуса. Сжатый воздух поступает в цилиндрический корпус через отверстие в стенке и заполняет "камеру", образуемую стенкой ротора, стенкой корпуса и одной из пластин. Под давлением воздуха пластина вместе с ротором поворачивается, а следующая пластина, проходя мимо отверстия, прерывает поступление воздуха в данную камеру и открывает ему доступ в следующую. Захваченный воздух расширяется, отдавая часть своей энергии, пока не достигается полный объем камеры. После этого открывается выпускное отверстие, и порция отработанного воздуха выходит наружу.
Турбинные пневмодвигатели. В воздушной турбине энергия давления сжатого воздуха преобразуется в кинетическую энергию его направленного движения при расширении воздуха в соплах. Высокоскоростная воздушная струя ударяется о лопатки ротора, действует на него с тангенциальной силой и заставляет вращаться (воздушные турбины сходны с паровыми).

Большая медицинская энциклопедия

Оговоримся сразу, азот в воздухе занимает большую часть, однако и химический состав оставшейся доли весьма интересен и разнообразен. Если коротко, то список основных элементов выглядит следующим образом.

Однако дадим и небольшие пояснения по функциям этих химических элементов.

1. Азот

Содержание азота в воздухе – 78% по объему и 75% по массе, то есть этот элемент доминирует в атмосфере, имеет звание одного из самых распространенных на Земле, и, кроме того, содержится и за пределами зоны обитания человека – на Уране, Нептуне и в межзвездных пространствах. Итак, сколько азота в воздухе, мы уже разобрались, остался вопрос о его функции. Азот необходим для существования живых существ, он входит в состав:

  • белков;
  • аминокислот;
  • нуклеиновых кислот;
  • хлорофилла;
  • гемоглобина и др.

В среднем около 2% живой клетки составляют как раз атомы азота, что объясняет, зачем столько азота в воздухе в процентах объема и массы.
Азот также является одним из инертных газов, добываемых из атмосферного воздуха. Из него синтезируют аммиак, используют для охлаждения и в других целях.

2. Кислород

Содержание кислорода в воздухе – один из самых популярных вопросов. Сохраняя интригу, отвлечемся на один забавный факт: кислород открыли дважды – в 1771 и 1774 годах, однако из-за разницы в публикациях открытия, почести открытия элемента достались английскому химику Джозефу Пристли, который фактически выделил кислород вторым. Итак, доля кислорода в воздухе колеблется около 21% по объему и 23% по массе. Вместе с азотом эти два газа образуют 99% всего земного воздуха. Однако процент кислорода в воздухе меньше, чем азота, и при этом мы не испытываем проблем с дыханием. Дело в том, что количество кислорода в воздухе оптимально рассчитано именно для нормального дыхания, в чистом виде этот газ действует на организм подобно яду, приводит к затруднениям в работе нервной системы, сбоям дыхания и кровообращения. При этом недостаток кислорода также негативно сказывается на здоровье, вызывая кислородное голодание и все связанные с ним неприятные симптомы. Поэтому сколько кислорода в воздухе содержится, столько и нужно для здорового полноценного дыхания.

3. Аргон

Аргон в воздухе занимает третье место, он не имеет запаха, цвета и вкуса. Значимой биологической роли этого газа не выявлено, однако он обладает наркотическим эффектом и даже считается допингом. Добытый из атмосферы аргон используют в промышленности, медицине, для создания искусственной атмосферы, химического синтеза, пожаротушения, создания лазеров и пр.

4. Углекислый газ

Углекислый газ составляет атмосферу Венеры и Марса, его процент в земном воздухе куда ниже. При этом огромное количество углекислоты содержится в океане, он регулярно поставляется всеми дышащими организмами, выбрасывается за счет работы промышленности. В жизни человека углекислый газ используется в пожаротушении, пищевой промышленности как газ и как пищевая добавка Е290 – консервант и разрыхлитель. В твердом виде углекислота – один из самых известных хладагентов «сухой лед».

5. Неон

Тот самый загадочный свет дискотечных фонарей, яркие вывески и современные фары используют пятый по распространенности химический элемент, который также вдыхает человек – неон. Как и многие инертные газы, неон оказывает на человека наркотическое действие при определенном давлении, однако именно этот газ используют в подготовке водолазов и других людей, работающих при повышенном давлении. Также неоново-гелиевые смеси используются в медицине при расстройствах дыхания, сам неон используют для охлаждения, в производстве сигнальных огней и тех самых неоновых ламп. Однако, вопреки стереотипу, неоновый свет не синий, а красный. Все остальные цвета дают лампы с другими газами.

6. Метан

Метан и воздух имеют очень древнюю историю: в первичной атмосфере, еще до появления человека, метан был в куда большем количестве. Сейчас этот газ, добываемый и используемый как топливо и сырье в производстве, не так широко распространен в атмосфере, но по-прежнему выделяется из Земли. Современные исследования устанавливают роль метана в дыхании и жизнедеятельности организма человека, однако авторитетных данных на этот счет пока нет.

7. Гелий

Посмотрев, сколько гелия в воздухе, любой поймет, что этот газ не относится к числу первостепенных по важности. Действительно, сложно определить биологическое значение этого газа. Не считая забавного искажения голоса при вдыхании гелия из шарика 🙂 Однако гелий широко применяется в промышленности: в металлургии, пищевой промышленности, для наполнения воздухоплавающих судов и метеорологических зондов, в лазерах, ядерных реакторах и т.д.

8. Криптон

Речь не идет о родине Супермена 🙂 Криптон – инертный газ, который в три раза тяжелее воздуха, химически инертен, добывается из воздуха, используется в лампах накаливания, лазерах и все еще активно изучается. Из интересных свойств криптона стоит отметить, что при давлении в 3,5 атмосферы он оказывает наркотический эффект на человека, а при 6 атмосферах приобретает резкий запах.

9. Водород

Водород в воздухе занимает 0,00005% по объему и 0,00008% по массе, но при этом именно он – самый распространенный элемент во Вселенной. О его истории, производстве и применении вполне можно написать отдельную статью, поэтому сейчас ограничимся небольшим списком отраслей: химическая, топливная, пищевая промышленности, авиация, метеорология, электроэнергетика.

10. Ксенон

Последний в составе воздуха, изначально и вовсе считавшийся только примесью к криптону. Его название переводится как «чужой», а процент содержания и на Земле, и за ее пределами минимальный, что обусловило его высокую стоимость. Сейчас без ксенона не обходятся: производство мощных и импульсных источников света, диагностика и наркоз в медицине, двигатели космических аппаратов, ракетное топливо. Кроме того, при вдыхании ксенон значительно понижает голос (обратный эффект гелию), а с недавнего времени вдыхание этого газа причислено к списку допингов.

Каждый день мы совершаем около 20 тысяч вдохов. Достаточно на 7–8 минут остановить поступление кислорода в кровь, чтобы в коре головного мозга произошли необратимые изменения. Воздух поддерживает множество биохимических реакций в нашем организме. И от его качества во многом зависит наше здоровье.


текст: Татьяна Гавердовская

Каждый день мы совершаем около 20 тысяч вдохов. Достаточно на 7-8 минут остановить поступление кислорода в кровь, чтобы в коре головного мозга произошли необратимые изменения. Воздух поддерживает множество биохимических реакций в нашем организме. И от его качества во многом зависит наше здоровье.

Атмосферный воздух у поверхности Земли в норме состоит из азота (78,09%), кислорода (20,95%), углекислоты (0,03-0,04%). Остальные газы вместе занимают по объему менее 1%, к ним относятся аргон, ксенон, неон, гелий, водород, радон и другие. Однако выбросы промышленных предприятий и транспорта нарушают это соотношение компонентов. Только в Москве в воздух выбрасывается от 1 до 1,2 млн тонн вредных химических веществ в год, то есть 100-150 кг на каждого из 12 миллионов жителей Москвы. Стоит задуматься, чем мы дышим, и что может помочь нам противостоять этой «газовой атаке».

Кратчайший путь

Легкие человека имеют поверхность до 100 м2, что в 50 раз превышает площадь кожных покровов. В них воздух непосредственно контактирует с кровью, в которой растворяются почти все входящие в него вещества. Из легких, минуя детоксикационный орган - печень, они действуют на организм в 80-100 раз сильнее, чем через желудочно-кишечный тракт при проглатывании.

Воздух, которым мы дышим, загрязняют порядка 280 токсичных соединений. Это соли тяжелых металлов (Cu, Cd, Pb, Mn, Ni, Zn), оксиды азота и углерода, аммиак, сернистый газ и др. В безветренную погоду все эти вредные соединения оседают и создают у земли плотный слой - смог. Под влиянием ультрафиолетовых лучей в жаркий период вредоносные газовые смеси преобразуются в более вредные вещества - фотооксиданты. Ежедневно человек вдыхает до 20 тыс. л воздуха. И за месяц в крупном городе может набрать токсическую дозу. В результате снижается иммунитет, возникают респираторные и неврологические заболевания. Особенно страдают от этого дети.

Принимаем меры

1. Защитить организм от проникновения тяжелых металлов в клетки поможет чай из календулы, ромашки, облепихи и шиповника.

2. Для выведения токсических вещества успешно используются некоторые растения, например, кориандр (кинза). По мнению экспертов, необходимо съедать как минимум 5 г этого растения в сутки (примерно 1 ч. л.).

3. Способностью связывать и выводить тяжелые металлы также обладают чеснок, семена кунжута, женьшень и многие другие продукты растительного происхождения. Эффективен также яблочный сок, в котором много пектинов - природных адсорбентов.

Город без кислорода

Жители мегаполиса постоянно испытывают нехватку кислорода из-за промышленных выбросов и загрязнений. Так, при сжигании 1 кг угля или дров расходуется более 2 кг кислорода. Один автомобиль за 2 часа работы поглощает столько кислорода, сколько дерево выделяет за 2 года.

Концентрация кислорода в воздухе составляет зачастую всего 15-18%, тогда как норма - порядка 20%. На первый взгляд, это небольшая разница - всего-то 3-5%, но для нашего организма она довольно ощутима. Уровень кислорода в воздухе 10% и ниже смертелен для человека. К сожалению, достаточное количество кислорода в природных условиях есть лишь в городских парках (20,8%), загородных лесах (21,6%) и на берегах морей и океанов (21,9%). Ситуация усугубляется тем, что каждые 10 лет площадь легких уменьшается на 5%.

Кислород повышает умственную способность, устойчивость организма к стрессам, стимулирует согласованную работу внутренних органов, повышает иммунитет, способствует снижению веса, нормализуется сон. Ученые подсчитали, что если бы в атмосфере Земли было в 2 раза больше кислорода, то мы могли бы бежать сотни километров, не уставая.

Кислород составляет 90% массы молекулы воды. Организм же содержит 65-75% воды. Головной мозг составляет 2% от общей массы тела и потребляет 20% кислорода, поступающего в организм. Без кислорода клетки не растут и умирают.

Принимаем меры

1. Для адекватного насыщения организма кислородом необходимо ежедневно не менее одного часа гулять в лесу. В течение одного года обычное дерево вырабатывает объем кислорода, необходимый для семьи из 4 человек на протяжении такого же периода.

2. Чтобы восполнить дефицит кислорода в организме, врачи рекомендуют пить подсоленную и минеральную щелочную воду, молочнокислые напитки (обезжиренное молоко, молочную сыворотку), соки.

3. Помогают избавиться от гипоксии кислородные коктейли. По влиянию на организм небольшая порция коктейля равнозначна полноценной лесной прогулке.

4. Кислородотерапия - это методика лечения, основанная на дыхании газовой смесью с повышенной (по отношению к содержанию кислорода в воздухе) концентрацией кислорода.

Домашняя западня

По оценкам экспертов ВОЗ, городской житель проводит в помещении около 80% своего времени. Ученые обнаружили, что воздух в комнатах в 4-6 раз грязнее наружного и в 8-10 раз токсичнее. Это формальдегид и фенол из мебели, некоторых видов синтетических тканей, ковровых покрытий, вредные вещества из строительных материалов (например, карбомид из цемента может выделять аммиак), пыль, шерсть домашних животных и т. д. В то же время в городских помещениях кислорода значительно меньше, что приводит к возникновению у людей кислородной недостаточности (гипоксии).

Газовая плита также может негативно повлиять на атмосферу в доме. Воздух газифицированных зданий в сравнении с наружным воздухом содержит в 2,5 раза больше вредных окислов азота, в 50 раз больше серосодержащих веществ, фенола - на 30-40%, окислов углерода - на 50-60%.

Но главный бич помещений - углекислый газ, основным источником которого является человек. Мы выдыхаем от 18 до 25 л этого газа в час. Последние исследования зарубежных ученых показали, что углекислый газа негативно влияет на организм человека даже в низких концентрациях. В жилых помещениях углекислого газа не должно быть более 0,1%. В комнате при концентрации углекислого газа 3-4% человек задыхается, появляются головная боль, шум в ушах, замедляется пульс. Тем не менее в небольшом количестве (0,03-0,04%) углекислый газ необходим для поддержания физиологических процессов.

Принимаем меры

1. Очень важно, чтобы воздух в помещении был «легким», т. е. ионизированным. При снижении количества аэроионов кислород хуже усваивается эритроцитами крови, возможна гипоксия. В воздухе городов содержится всего 50-100 легких ионов в 1 см³, а тяжелых (незаряженных) - десятки тысяч. В горах самая высокая ионизация воздуха - 800-1000 в 1 см³ и более.

2. Согласно исследованию, проведенному космическим агентством США, некоторые домашние растения действуют как эффективные биофильтры. В борьбе с формальдегидами помогают хлорофитум, папоротник нефролепис. Ксилол и толуол, которые выделяются, например, лаками, нейтрализует фикус Бенджамина. С аммиачными соединениями может справиться азалия. Выделяют много кислорода и поглощают вредные вещества сансевьера, филодендрон, плющ, диффенбахия.

3. Не следует забывать про регулярное проветривание. Особенно это важно в спальне, где люди проводят треть своей жизни.

Опасности на дороге

Автотранспорт поставляет львиную долю загрязняющих воздух веществ: для Москвы - это порядка 93%, для Петербурга - 71%. В Москве числится почти 4 миллиона автомашин, и с каждым годом их количество растет. К 2015 году, как полагают специалисты, автопарк Москвы составит более 5 миллионов автомобилей. За месяц средний легковой автомобиль сжигает столько кислорода, сколько за год выделяет 1 га леса, при этом выбрасывает ежегодно примерно 800 кг окиси углерода, около 40 кг окислов азота и порядка 200 кг различных углеводородов.

Самую серьезную опасность для тех, кто часто пользуется автомобилями, представляет угарный газ. Он в 200 раз быстрее связывается с гемоглобином крови, чем кислород. Эксперименты, проведенные в США, показали, что из-за влияния угарного газа у людей, проводящих большое количество времени за рулем, нарушается реакция. При концентрации угарного газа 6 мг/м3 в течение 20 минут снижается цветовая и световая чувствительность глаз. Под воздействием большого количества угарного газа может произойти обморок, случиться кома и даже наступить смерть.

Принимаем меры

1. Молочные ферменты и кислоты выводят продукты распада угарного газа. При нормальной переносимости в день можно выпивать до литра молока.

2. Для нейтрализации действия угарного газа рекомендуется есть как можно больше фруктов: зеленые яблоки, грейпфруты, а также мед и грецкие орехи.

Приятное с полезным

Немецкие ученые выяснили, что сексуальное возбуждение активизирует работу сердечно-сосудистой системы и увеличивает приток крови. В результате ткани лучше насыщаются кислородом и риск инфаркта или инсульта уменьшается на 50%.

Чем дышит метро

Ученые из Karolinska Institute в Швеции пришли к выводу, что от вдыхания микроскопических частиц угля, асфальта, железа и других загрязняющих элементов, находящихся в воздухе стокгольмского метрополитена, каждый год умирает более 5 тысяч шведов. Эти частицы оказывают на ДНК человека более сильное разрушительное воздействие, нежели частицы, содержащиеся в автомобильных выхлопах и образованные в результате сжигания древесного топлива.

Небо над Москвой

По данным наблюдений Росгидромета, в 2011 году степень загрязнения атмосферного воздуха в городах Московского региона оценивалась как: очень высокая - в Москве, высокая - в Серпухове, повышенная - в Воскресенске, Клину, Коломне, Мытищах, Подольске и Электростали, низкая - в Дзержинском, Щелково и Приокско-Террасном биосферном заповеднике.