Как работает автоматический предохранитель. Предохранитель или автоматический выключатель – что лучше

Введение

Вопрос выбора защитного устройства является очень актуальным в последнее время. Защищаемое оборудование становится все дороже и дороже и поэтому любая авария в электроустановке вызывает трудности в устранении поломки, связанные с поиском комплектующих, времени устранении поломки и стоимостью. По этому необходимо на стадии проектировании выбрать правильное защитное устройство исходя из многих критериев: доступность, надежность, экономичность изделия, комплексная экономичность.

Доступность

Правильное решение для каждого применения

Защита на автоматических выключателях очень удобна при использовании непосредственно перед нагрузкой. Автоматические выключатели можно легко взвести заново, они занимают меньше места и стоимость автоматических выключателей на токи до 630А меньше нежели комбинированного рубильника под предохранители . На большие токи стоимость автоматических выключателей значительно превышает стоимости предохранителей. И их чаще всего использует непосредственно на вводах и в главных распределительных щитах.

Заменить предохранитель или взвести автомат защиты?

В плане удобства использования автоматические выключатели намного лучше подходят для любого решения и применения. Автоматический выключатель легко включить заново после срабатывания, как обслуживающему персоналу так и любому неопытному человеку. В плане безопасности предохранители намного лучше. Чтобы заменить предохранители необходимо проделать намного больше операций и потребуется опыт в эксплуатации электроустановок. Ниже вы можете увидеть что бывает с автоматическим выключателем при коротком замыкании, а если ток короткого замыкания больше то может произойти возгорание автоматического выключателя:

Что надежнее: предохранитель или автоматический выключатель?

Сколько раз можно включить автомат защиты после срабатывания? На этот вопрос никто не сможет ответить, т.к. при каждом коротком замыкании контакты обгорают. Это происходит в следствии того, что цепь рвется не моментально, а с задержкой по времени. В современных автоматических выключателях устанавливается искрогаситель, который гасит дугу в воздухе. Но при больших токах искрогаситель может не справиться, вследствие чего происходит обгорание контактов и увеличение сопротивления контактов. Это ведет к тому что дорогостоящий автоматический выключатель приходится заменять. На следующих видео вы увидите тесты с проверкой сопротивления контактов:

При использовании предохранителей вы при каждой замене получаете абсолютно новое устройство с заводскими характеристиками.

Применение

Применение защитных устройств разнообразно. Где следует применять автоматические выключатели, а где предохранители и плавкие вставки зависит от различных причин, рассмотренных в этой главе.

Селективность

Селективность в применении защитных устройств играет важную роль в распределение питания. От того как правильно расчитаны номиналы защитных устройств зависит питание ответственных потребителей.
Тесты показывают, что предохранители обладают лучшей селективностью не зависимо от токов короткого замыкания . Также предохранители обладают общей селективностью 1.6 (коэффициент между стоящими рядом номиналами 630/400=1,6) и однозначно локализуют последствия аварии только в одной отходящей линии. Характеристики предохранителей определены в стандарте IEC 269 и не зависят от производителя. Это означает что селективность предохранителей не зависит от производителя предохранителя будь то Socomec , ABB, Schneider Electric, Bussman, Ferraz Shawmut и отпадает необходимость изучать токи короткого замыкания для подбора номиналов защитного устройства.
При использовании автоматических выключателей общую селективность 1,6 сложно достичь, т.к. она зависит от токов короткого замыкания. Эту проблему можно обойти используя автоматические выключатели с временной задержкой, но в этом случае большой ток короткого замыкания будет во всей цепи. Или можно использовать каскадную схему в которой устанавливается последовательно пара автоматических выключателей, вышестоящий автомат защиты защищает только нижестоящий автомат защиты. Но при этом у нас происходит удорожание стоимости электроустановки.

Защита двигателей

Схема пуска двигателя в основном состоит из трех частей - это автоматического выключателя, пускателя (контактора) и термореле. Пускатель служит для пуска и останова двигателя. Термореле для защиты от перегрузки и потери фазы. Автоматический выключатель для защиты двигателя.
Предохранители или плавкие вставки для этого применения можно использовать только для защиты от короткого замыкания, но целесообразно ли это?
Автоматический выключатель удобнее использовать, его всегда можно включить и выключить, но что происходит с пускателем во время короткого замыкания?
Испытания показывают, что в зависимости от токов короткого замыкания контакты пускатель могут либо залипнуть либо ухудшить свою проводимость. В первом случае после короткого замыкания следует заменить пускатель, а во втором случае неисправность может никто не заметить. Вследствие того, что контакты изменят свое сопротивление это может повлиять на работу двигателя и, например, производственной линии, и далее вывести из строя дорогостоящий двигатель. С использованием предохранителей такого может не произойти. Также предохранители могут удешевить стоимость системы пуска двигателя за счет применения пускателя и термореле меньшего номинала. Действительно т.к. защита на предохранителях срабатывает намного быстрее, нет необходимости завышать номиналы пускателя и термореле. Это можно посмотреть в технических характеристиках пускателя и термореле. Также в схеме управления двигателя могут присутствовать электронные компоненты, которые могут защитить только предохранители.

Вывод из этого такой: в схеме защиты двигателя термореле обеспечивает обнаружение перегрузки и потерю фазы, а предохранители обеспечивают обнаружение короткого замыкания и уменьшение номиналов пускателя и термореле.

Безопасность

Работа автоматического выключателя

Во время короткого замыкания в защитном устройстве освобождается большое количество электроэнергии, которое должно трансформироваться в другие виды энергии. Автоматический выключатель - это составное устройство, состоящее из мелких деталей. При коротком замыкании идет большая нагрузка на эти детали, которые не всегда могут выдержать такие испытания. Поэтому следует периодически производить осмотр внешнего состоянии автоматических выключателей. На следующих видео можно увидеть как реагируют автоматические выключатели на 250А и на 630А при коротком замыкании.

Устройство предохранителя

Предохранитель - это необслуживаемое устройство состоящее из плавкой вставки, загущающего материала и герметичного корпуса. Т.к. предохранитель срабатывает очень быстро, он ограничивает ток короткого замыкания (цепь разъединятся в то время, когда кривая тока короткого замыкания не достигла своего максимума) тем самым меньше освобождается энергии и ее не достаточно, чтобы разорвать герметичный корпус предохранителя.
Независимо от срока службы предохранителя он всегда сработает и при замене предохранителя вы получаете абсолютно новое защитное устройство (это как запускать в космос новую ракету или многоразовый шатл).

Принцип работы предохранителя

Замена предохранителя

Современные комбинированные рубильники под предохранители (например Fuserbloc) обеспечивают безопасную замену предохранителя. Это получается за счет двойного отключения контактов как со стороны нагрузки, так со стороны сети. В таких рубильниках в выключенном положении на предохранителе нет потенциала и до него можно дотрагиваться пальцами (в соответствии с требованиями по электробезопасности, необходимо убедиться отсутствия напряжения индикатором напряжения или другими средствами). Также при замене предохранителя можно использовать основные средства защиты такие как: диэлектрический держатель предохранителя, диэлектрические перчатки.
При этом, когда предохранитель снят с рубильника обеспечивается требования видимого разрыва, т.к. мы разорвали участок цепи и видим его отсутствие.

Ограничение тока короткого замыкания

На рисунке справ приведен график развития тока короткого замыкания без защитного устройства и с предохранителем. Из него видно, что предохранитель ограничивает ток короткого замыкания. Все промышленные предохранители имеют покрайней мере 80кА отключающую способность. Чем больше ток короткого замыкания, тем еще быстрее сработает предохранитель. Отключающая способность автоматического выключателя зависит от напряжения, это не очень хорошо, т.к. при коротком замыкании сильно возрастает ток и напряжение может изменяться. При этом на проводники и шинопроводы начинает действовать большая сила ампера, которая может разорвать и разрушить не только проводники, но и всю электроустановку. На следующем видео приведены тесты ограничения тока короткого замыкания автоматическими выключателями и предохранителями.

Заключение

Защита на предохранителях работает лучше, но их не так удобно применять как автоматические выключатели. Оба варианта имеют место быть, все зависит от применения. На вводах обычно используют предохранители, непосредственное перед нагрузкой автоматические выключатели.

Статья подготовлена с использованием материалов принадлежащих компании Socomec SA
Опубликована: 19.08.2009

Электрический предохранитель - электрический аппарат , выполняющий защитную функцию. Предохранитель защищает электрическую цепь и её элементы от перегрева и возгорания при протекании тока высокой силы . В цепи обозначается буквами «FU» (международное обозначение, от слова Fuse) или «Пр» (обозначение в СССР) и прямоугольником со сплошной линией в центре.

Под термином "электрический предохранитель" чаще всего подразумевают его общее назначение в защите электрических цепей от сверхтоков, нежели какую-то конкретную конструкцию.

Разновидности предохранителей

Различные предохранители

Одноразовый предохранитель

Используемые на яхте плавкие предохранители (DIN 43560)

В электрической цепи плавкий предохранитель является слабым участком электрической цепи, сгорающий в аварийном режиме, тем самым разрывая цепь и предотвращая последующее разрушение высокой температурой. Плавкие предохранители делятся на следующие типы:

  • слаботочные вставки (для защиты небольших электроприборов до 6 ампер)
    • 10х30
  • вилочные (для защиты электрических цепей автомобилей)
    • миниатюрные
    • обычные вилочные
  • пробковые (встречаются в жилом секторе, до 63 ампер)
    • DIAZED (самые распространённые в СССР)
    • NEOZED
  • ножевые (до 1250 ампер)
    • 000 (до 100 ампер)
    • 00 (до 160 ампер)
    • 0 (до 250 ампер)
    • 1 (до 355 ампер)
    • 2 (до 500 ампер)
    • 3 (до 800 ампер)
    • 4а (до 1250 ампер)
  • кварцевые
  • газогенерирующие

Так же плавкие предохранители различаются по характеристике срабатывания относительно номинального тока. Из-за инертности срабатывания плавких предохранителей, в профессиональной среде электриков они довольно часто используются в качестве селективной защиты в паре с автоматическими выключателями. Селективности между самими плавкими вставками добиваются соотношением 1:1,6 [там же], время-токовая характеристика плавких предохранителей устанавливается зависимостью соответственно I²t; ПУЭ регулирует защиту воздушных проводящих линий таким образом, чтобы предохранитель срабатывал за 15 секунд (ток короткого замыкания в конце линии должен быть равен трём номинальным токам предохранителя). Существенной величиной является время, за которое происходит разрушение проводника при превышении установленного тока. С целью уменьшения этого времени некоторые плавкие предохранители содержат пружину предварительного натяжения. Эта пружина также разводит концы разрушенного проводника, предотвращая возникновение дуги.

Конструкция плавкого предохранителя

40-амперные предохранители с характеристикой срабатывания "gG", равносильные советской характеристике "ППН"

  • плавкую вставку - элемент содержащий разрывную часть электрической цепи (например проволоку, перегорающую при превышении определённого уровня тока)
  • механизм крепления плавкой вставки к контактам, обеспечивающим включение предохранителя в электрическую цепь и монтаж предохранителя в целом.

Исполнительный механизм плавкого предохранителя

Плавкие вставки (в керамическом корпусе) предохранителя

Разъединитель предохранителей для монтажа на DIN-рейку

Плавкая вставка предохранителя обычно представляет собой стеклянную или фарфоровую оболочку, на основаниях которой располагаются контакты, а внутри находится тонкий проводник из относительно легкоплавкого металла. Определённой силе тока срабатывания соответствует определённое поперечное сечение проводника. Если сила тока в цепи превысит максимально допустимое значение, то легкоплавкий проводник перегревается и расплавляется, защищая цепь со всеми её элементами от перегрева и возгорания.

Плавкие вставки используемых в домашнем хозяйстве пробковых предохранителей имеют следующую маркировку (DIN 18015-1):

Наибольшее распространение получили кварцевые и газогенерирующие предохранители.

В кварцевых предохранителях (ПК) патрон заполнен кварцевым песком, и дуга гасится путем удлинения, дробления и соприкосновения с твердым диэлектриком.

В газогенерирующих предохранителях для гашения дуги используются твердые газогенерирующие материалы (фибра, винипласт и др.). Газогенерирующие предохранители выполняются с выхлопом и без выхлопа газа из патрона при срабатывании. Предохранители с выхлопом газа из патрона называют также стреляющими (ПСН-10 и ПС-35), поскольку срабатывание их сопровождается звуком, похожим на оружейный выстрел. Предохранители напряжением выше 1 кВ выполняются как для внутренней, так и для наружной установки.

Защита в лампах накаливания

Лампы накаливания снабжают плавкими предохранителями для предотвращения перегрузки питающей цепи в случае возникновения электрической дуги в момент перегорания лампы. Предохранителем в лампе служит участок одного из вводных проводников, расположенных в цоколе лампы. Этот участок имеет меньшее сечение по сравнению с остальной длиной провода; в лампах с прозрачной колбой это можно заметить, рассматривая лампу на просвет. Для 220-вольтовых бытовых ламп предохранитель обычно рассчитан на ток 7 А.

Автоматический предохранитель

Автоматический предохранитель (правильное название: Автоматический выключатель , также называется «автомат защиты», «защитный автомат» или же просто «автомат») состоит из диэлектрического корпуса, внутри которого располагаются подвижный и неподвижный контакты. Подвижный контакт подпружинен, пружина обеспечивает усилие для быстрого расцепления контактов. Механизм расцепления приводится в действие одним из двух расцепителей: тепловым или электромагнитным.

Конструкция автоматического предохранителя

  • Тепловой расцепитель представляет собой биметаллическую пластину , нагреваемую протекающим током. При протекании тока выше допустимого значения биметаллическая пластина изгибается и приводит в действие пружину, отводящую подвижный контакт, разрывая тем самым электрическую цепь. Время срабатывания зависит от тока (время-токовая характеристика) и может изменяться от секунд до часа. Минимальный ток, при котором должен срабатывать тепловой расцепитель, составляет 1,3 от номинального тока предохранителя до 63 ампер и свыше 63 ампер 1,45 от номинального тока предохранителя. В отличие от плавкого предохранителя, автоматический предохранитель готов к следующему использованию после остывания пластины.

Тем не менее, параметры автоматического предохранителя могут изменяться при каждом срабатывании из-за обгорания контактов. Эту особенность следует учитывать в промышленных установках.

  • Магнитный (мгновенный) расцепитель представляет собой соленоид, подвижный сердечник которого приводит в действие пружину, отводящую подвижный контакт. Ток, проходящий через автоматический выключатель, течет по обмотке соленоида и вызывает втягивание сердечника при превышении заданного порога. Мгновенный расцепитель, в отличие от теплового, срабатывает очень быстро (доли секунды), но при значительно большем превышении тока: в 6 и более раз от номинального тока, в зависимости от типа (автоматические выключатели делятся на типы A, B, C, D, E и K в зависимости от характеристики срабатывания расцепителей).

Во время расцепления контактов может возникнуть электрическая дуга, поэтому контакты имеют особую форму и находятся в дугогасительной камере.

Расчёт необходимого предела срабатывания

Расчёт предохранителя ведётся с учётом тока короткого замыкания в конце линии, нагреванием проводников, проседанием напряжения (не более 4-5%), а также с учётом потребностей самого потребителя. Выделенная в ходе протекания электрического тока через проводники теплота должна рассеиваться в окружающую среду, не повреждая при этом каких-либо частей и/или составляющих проводящих частей электрооборудования.

Предохранитель выбирается из стандартного ряда, с ближайшим номинальным током срабатывания, превышающим полученное значение. Так же должны учитываться пусковые токи нагрузки потребителя при выборе характеристики.

Условия выбора предохранителя в трёхфазных цепях (нагрузки):

  • Для трёхфазного эл. приёмника без пусковых токов (нагреватель и др.)

Iвст. ≥ Iдл.расч. ,

  • Для трёхфазного эл. приёмника c пусковым током (Электрический двигатель)

Iвст. =Кп∙Iном/α.
где: Кп =5…8 (обычно 7) – коэффициент пуска ЭД (Iпуска =Кп∙Iном),
α – коэффициент тяжести пуска: 1,6 – тяжёлый, 2 – средний, 2,5 – лёгкий пуск.

Приэтом должно выполняться неравенство: IК.З. ≥ 3∙Iвст. Где: IК.З. - ток короткого замыкания (в защищаемом участке цепи)

Техника безопасности

Ножевые предохранители, представляющие потенциальную опасность электротравм при замене.

Каждый тип предохранителей требует свой подход к обслуживанию и замене.

  • Некоторые типы предохранителей (особенно для больших токов) могут представлять опасность для простого потребителя и требуют обслуживания со стороны квалифицированного персонала.
  • Самовольное увеличение номиналов может повлечь за собой повреждение электропроводки высокой температурой вплоть до пожара.

Замена предохранителей

  • Замена предохранителей бытовым пользователем может производиться только при снятом напряжении и нагрузке. Замена предохранителя под нагрузкой может привести к возникновению электрической дуги, и, как следствие, повреждению глаз, ожогам рук, порче держателя предохранителя. Однако конструкция многих советских потребительских щитов не предусматривает предварительного отключения перед заменой предохранителя; это объясняется тем, что при откручивании пробки в момент отсоединения корпус находится всё ещё в патроне и следовательно потребитель не имеет доступа к дуге. Однако, после снятия предохранителя, потребитель имеет доступ к находящимся под опасным напряжением токоведущим частям. В странах Европы для устранения этого недостатка используется более безопасный разъединитель предохранителей с номиналами пробковых предохранителей.
  • В электроустановках до 1000 вольт замена предохранителей с открытыми токоведущими частями должна производится квалифицированным персоналом с использованием средств защиты лица и глаз, специальными клещами, рука меняющего работника должна быть защищена диэлектрической перчаткой. Так же можно встретить диэлектрическую перчатку со вшитыми клещами для замены предохранителей.
  • Замена высоковольтных предохранителей может производиться только при закороченном на землю питании.

Использование предохранителя в качестве коммутационного аппарата

Принципиальная схема защиты от случайного возвращения напряжения

Почти всегда при работах в электроустановке существует необходимость снять напряжение для безопасного проведения тех или иных работ в электроустановке. Если в щитах производственных электроустановок коммутационные аппараты имеют короткозамыкатель на землю; то аппараты в щитах простых бытовых потребителей ограничиваются более простыми конструкциями, всего лишь разрывающими цепь в случае аварийной ситуации. Зачастую, при проведении электроработ в жилом секторе ограничиваются только отключением предохранителя, причём отключенный на время проведения электроработ предохранитель никак не помечается - в при случайном включении кем-то посторонним, производящие в отключённом сегменте электроработы люди окажутся под опасным напряжением. На время проведения электроработ необходимо вынимать фазный(-е) провод(а) из предохранителя на стороне потребителя, чтобы случайное включение посторонними лицами не поставило под угрозу жизни производящих в данном сегменте электроработы людей и не вызвало их электротравмы.

Выбор предохранителей

Измерительный прибор для измерения тока короткого замыкания

Выбор должен происходить исходя из технических возможностей проводки/защищаемого электрооборудования.

  • При проектировании электроустановки, следует учитывать токи короткого замыкания в проектируемых участках цепей электроустановки. Так же тип предохранителя должен соответствовать среде эксплуатации: к примеру, нежелательно устанавливать ножевые предохранители в групповом щите домашнего хозяйства во избежании сложностей при его обслуживании.
  • При добавлении новой цепи в уже имеющейся установки, измеряют сопротивление петли и делят напряжение на получившееся значение (чаще всего процесс замера сопротивления петли игнорируется); при этом номинал предохранителя в электроустановках не должен превышать допустимого длительного тока для проводов в сегменте электропроводки ниже предохранителя по ходу распределения энергии. Допустимый ток зависит от характеристик провода и определяется в соответствии с пунктом 1.3.10 ПУЭ. Если в защищаемом сегменте есть элементы с ещё меньшим допустимым током, то номинал предохранителя ограничен их номиналом тока. Например, если провода допускают 25 А, а розетки - только 16, то предохранитель следует брать не более 16 А.

При нарушении этих условий чрезмерный ток может повредить розетки и другие элементы электроустановки, а также привести к пожару. Форма патрона для плавких предохранителей может быть такой, что установить в него предохранитель большего номинала невозможно.

  • При необходимости подключения очень мощного электроприбора сто́ит позаботится о предварительном отключении всех не нужных в данный момент электроприборов , это часто предотвращает срабатывание предохранителя.
  • Следует также обратить внимание на приборы, способные выйти из строя при неожиданных включениях/выключениях и при больших колебаниях напряжения в сети: электромоторы (в том числе моторы компрессоров в холодильниках), компьютеры, цветные телевизоры (с катушкой размагничивания на кинескопе) и видеомагнитофоны.

Жучок

Иногда при отсутствии в наличии необходимого предохранителя, или с целью сознательного обхода защиты, используют металлическую перемычку между контактами - «жучок». Однако следует иметь в виду, что, выгорание предохранителя свидетельствует о наличии более серьёзных проблем в электрической цепи, в частности, о коротком замыкании. Замена штатного предохранителя «жучком» может привести к выходу из строя более дорогих комплектующих и/или к возгоранию. Последнее часто является причиной пожаров.

Любой потребитель электроэнергии потенциально опасен возможностью короткого замыкания. Например, розетка централизованного электроснабжения 220В может быть «исследована» детьми, которые вставят в неё согнутую скрепку. Очевидно, что подобное событие должно привести к аварийному отключению этой розетки, иначе последствия могут быть весьма негативными. Чтобы предусмотреть аналогичные аварийные ситуации в электросетях уже много лет повсеместно применяется плавкий предохранитель .

Его задача состоит в том, чтобы разорвать электрическую цепь при увеличении тока больше допустимого значения. Такое значение электрического тока задаётся свойствами плавкой вставки. Она представляет собой отрезок тонкой проволоки из специального сплава. Геометрические размеры вставки делаются такими, чтобы свыше определённой величины силы тока произошло её расплавление.

Для того чтобы плавкий предохранитель безопасно и удобно устанавливать в электрическую цепь, питающую нагрузки служит специальный керамический корпус с цоколем, как у лампочки накаливания . Этот корпус легко вкручивается в ответную часть. В коаксиальное отверстие вставляется плавкий предохранитель и в целом получается электрическая пробка.

Более надёжного защитного электроприбора, чем электрическая пробка не существует. Все остальные предохранительные системы содержат контакты, электронные ключи и их комбинации. Для такой системы существует вероятность отказа. И если в такой цепи не сгорит плавкая вставка электрической пробки по причине отсутствия, значит, сгорит что-либо более ценное.

Поэтому в любой цепи, обеспечивающей электропитание должна быть плавкая вставка соответствующая силе тока максимальной для этой цепи. Но пробка с плавким предохранителем неудобна тем, что её надо выкручивать заменять предохранитель и вкручивать обратно. К тому же она относительно долго перегорает – за это время может выйти из строя что-либо ещё, особенно из полупроводниковых приборов.

Зачем применяется автоматический предохранитель

Для преодоления перечисленных недостатков электрической пробки были разработаны автоматические предохранители. Они являются электромеханическими приборами, в которых есть нормально замкнутые контакты. Эти контакты размыкаются предварительно взведенной пружиной. Пружина взводится специальным рычажным механизмом вручную от нажатия кнопки или от перемещения специального рычажка. Сброс механизма и размыкание контактов происходит от воздействия на него пластины из биметалла, которая является проводником в таком предохранителе. Как и плавкая вставка, пластина нагревается, но не перегорает, а деформируется. Сила её деформации и освобождает пружину, размыкающую контакт.

Первоначально автоматические выключатели для домашнего пользования своей конструкцией были похожи на электрические пробки. Они заменяли их в том же месте установки, но были гораздо более удобными в эксплуатации – их не надо было выкручивать и менять предохранители. Простым нажатием кнопки новая автоматическая пробка восстанавливала свою работу. Иногда надо было недолго подождать остывания биметаллической пластины. Но это не вносило дискомфорт в эксплуатацию этого электроприбора.

По мере развития импорта на рынке стали появляться автоматические выключатели — предохранители европейского образца и стандарта.


Поэтому сейчас ассортимент автоматических предохранителей весьма разнообразен. Главным параметром этих устройств является скорость выключения тока, а затем количество возможных отключений. Но, несмотря на все свои преимущества перед обычной пробкой с плавкой вставкой для надёжной защиты от перегрузки лучше всего устанавливать в электрической цепи последовательно соединённые автоматический выключатель и обычную электрическую пробку.

А ппараты защиты - электрические аппараты, предназначенные для ручного или автоматического отключения защищаемой электрической сети при возникновении в ней аварийных режимов работы.

К аппаратам защиты электрических сетей предъявляются следующие требования:

  • установка в групповых электрических сетях устройств защиты, ограничивающих мощность, ток и напряжение, определяется проектом;
  • аппараты защиты должны отключать электрическую сеть при появлении опасных для них сверхтоков в минимальное время;
  • аппараты защиты не должны перегреваться сверх допустимых для них температур в условиях нормальной эксплуатации;
  • отключающая способность аппаратов защиты должна соответствовать токам короткого замыкания в начале защищаемого участка сети.

Эти требования изложены в современных нормативных документах, в том числе в Правилах устройства электроустановок, ТКП 121 «Пожарная безопасность. Электропроводка и аппараты защиты внутри зданий. Правила устройства и монтажа».

В процессе эксплуатации аппаратов защиты электрических сетей существует ряд обстоятельств, которые непосредственно влияют на их защитную функцию, и следовательно, способствуют повышению пожарной опасности электрических сетей. Существуют два основных вида аппаратов защиты по обеспечению защиты жилища от аварийных режимов работы электрических сетей, которые знакомы простому обывателю, - это предохранитель и автоматический выключатель.

Предохранитель и его разновидности

Пробковый предохранитель - электротехническое устройство, имеющее в большинстве случаев керамический корпус, в котором находится тонкий проводок (плавкий элемент). В его основании имеется контактная поверхность - цоколь. Плавкий элемент рассчитан на определенную мощность потребителей электрической энергии. Пробковый предохранитель монтируется в распределительном щитке, установленном на лестничной клетке, в коридоре жилого дома, квартиры. При аварийном режиме работы плавкий элемент перегорает в зависимости от величины тока, который через него проходит, что и приводит к обес-точиванию электрической сети после места установки предохранителя. Время срабатывания зависит от величины протекающего тока: чем больше сила тока, тем быстрее устройство обесточит электрическую сеть.

К достоинствам предохранителя относится простота монтажа, устройства. К недостаткам - большое время отключения при незначительно превышающих токах перегрузки. Отсутствие повторного включения требует замены плавкого элемента. Отсутствие возможности быстрых коммутаций также является изъяном: при вынужденном отключении электрической сети необходимо выкрутить пробковый предохранитель из основания, расположенного в силовом электрическом щитке. Защищает пробковый предохранитель только одну фазу электрической сети.

Разновидностью или, правильнее сказать, модернизацией пробковых предохранителей являются автоматические предохранители. В последнее время ими заменяют стандартные пробковые. Эти предохранители снабжены выключателем, который находится внутри их корпуса и способен отключить электрическую цепь с возможностью ее повторного включения.

В отличие от пробковых в автоматических предохранителях вместо плавкой вставки используется терморазмыкатель, работа которого основана на принципе действия биметаллической пластины. При прохождении через предохранитель тока, величина которого превышает допустимую, пластина изгибается таким образом, что действует на рычаг выключателя. В результате чего кнопка выдвигается из корпуса предохранителя. Для повторного включения ее необходимо вдавить.

Автоматические предохранители так же, как и пробковые, имеют керамический или пластмассовый термостойкий корпус, вкручиваются в основание электрического силового щитка и служат для защиты от аварийных режимов работы электрических сетей. К их недостаткам можно отнести сравнительную долгосрочность отключения при больших токовых нагрузках, в том числе и при незначительно превышающих номинальные токовые значения, защиту одной фазы электрической сети. Если предохранитель сработал по причине перегрузки в электрической сети, то необходимо две-три минуты для того, чтобы биметаллическая пластина вернулась в исходное положение и устройство было готово к работе.

Автоматический выключатель

Данный вид выключателя представляет собой электромеханическое переключающее устройство, способное коммутировать, в том числе и повторно, проводить и прерывать токи при нормальных условиях работы электрической сети, способное коммутировать и проводить токи в течение некоторого установленного времени и прерывать токи при определенных аварийных условиях, в том числе при коротких замыканиях. Автоматические выключатели по сравнению с уже рассмотренными аппаратами защиты обладают большей функциональностью, к тому же для них необходимым условием является требование малого времени размыкания электрической цепи.

К основной характеристике выключателя относится расчетный ток - рабочий ток, определяемый мощностью потребителей электрической энергии, согласно которому производится выбор выключателя. Расчетный ток указан на лицевой панели корпуса выключателя. При протекании тока, значение которого больше номинального (например, при перегрузке), через некоторое время срабатывает устройство выключателя. Оно зависит от того, насколько протекающий ток выше номинального. При токе короткого замыкания, равного или превышающего расчетный ток выключателя, аппарат защиты также срабатывает и отключает электрическую цепь.

В настоящее время корпус автоматического выключателя выполняется из реактопласта, что позволяет выдерживать большие температурные воздействия, не плавиться и не воспламеняться. Ранее корпуса выключателей изготавливались из термопласта и полистирола, предельная температура нагрева которых составляет 60-70 °C.

Устройство автоматического выключателя имеет следующие основные узлы:

  • Тепловой расцепитель - реагирует на постепенное увеличение тока в электрической сети больше установленного значения, в основе его устройства лежит биметаллическая пластина. Защищает от токов перегрузки. Расцепитель не реагирует на небольшие и кратковременные увеличения значения силы тока - чем он больше, тем быстрее расцепитель разомкнет электрическую цепь.
  • Электромагнитный расцепитель - реагирует на резкое, скачкообразное увеличение тока в сети. Состоит из катушки, сердечника и пружины. Принцип его действия основан на поведении стального сердечника электромагнитной катушки в измененном магнитном поле. Защищает от токов короткого замыкания. Расцепитель является быстродействующим - срабатывание происходит за доли секунды при превышении значения расчетного тока в несколько раз.
  • Дугогасящая камера. Назначение камеры - принять, разделить и погасить дугу, возникающую при разрыве контактов выключателя.
  • Контактная система. Состоит из неподвижных и подвижных контактов, Обеспечивает одинарный разрыв электрической цепи.

Выключатель может иметь дополнительные конструктивные элементы. Это вспомогательные контакты, устройство для запирания выключателя в положении «отключено», ручной и электромагнитный дистанционный приводы, сигнализация автоматического отключения и т. п. Автоматический выключатель способен защитить одну или несколько фаз сети. По способу размыкания электрической цепи автоматические выключатели делятся на:

  • однополюсные;
  • однополюсные с нейтралью;
  • двухполюсные;
  • трехполюсные;
  • трехполюсные с нейтралью;
  • четырехполюсные.

Принцип работы однополюсного автоматического выключателя следующий. При перегрузке нагревается биметаллическая пластина, которая расширяется и выгибается, тем самым толкает рычаг устройства - тепловой расцепитель, что вызывает размыкание электрической цепи и прекращает электроснабжение после места размыкания. При коротком замыкании происходит скачко-образное увеличение в несколько раз тока, который проходит через электромагнитную катушку однополюсного автоматического выключателя. Изменение магнитного поля вызывает изменение положения стального сердечника катушки так, что рычаг электромагнитного расцепителя срабатывает и происходит размыкание электрической цепи.

Характеристика срабатывания расцепителей автоматических выключателей зависит от типа подключаемой нагрузки. Различают следующие характеристики отключения автоматических выключателей. Выключатели с характеристикой отключения типа А предназначены для защиты электрических сетей большой протяженности. Автоматические выключатели с характеристикой отключения типа В используются преимущественно для осветительных сетей общего назначения, например для освещения коридоров, лестничных площадок в жилых домах. В свою очередь автоматические выключатели с характеристикой отключения типа С служат для коммутаций в осветительных и силовых сетях с умеренными пусковыми токами (освещение коридоров, рабочих мест люминесцентными лампами, работа ручного электроинструмента). Выключатели такого типа можно встретить на производстве при обеспечении защиты электрических сетей мастерских. В сетях с электродвигателями с большими пусковыми токами (подъемные механизмы, компрессорные, вентиляционные установки) предлагается использовать выключатели с характеристикой отключения типа D. Для подключения приемников электрической энергии с индуктивной нагрузкой (электрические печи, сушилки) рекомендуется использовать автоматические выключатели с характеристикой отключения типа К. Для защиты электронных устройств используются автоматические выключатели с характеристикой отключения типа Z.

Разнообразие видов, объединение нескольких функций защиты в одном устройстве, избирательность касательно потребителей электрической энергии и отключения одного или одновременно нескольких участков электрической сети, дополнительные конструктивные элементы для целей безопасности и другие достоинства указывают на то, что автоматические выключатели более приемлемы для защиты электрических сетей и включенных в них приемников электрической энергии, что и объясняется их повсеместной популярностью.

Меры предосторожности

Автоматические, пробковые предохранители в квартирах можно менять самостоятельно. Пробки, расположенные в силовых или осветительных щитках на лестничных площадках, могут менять только специалисты. Такая мера необходима для того, чтобы не установить ошибочно предохранитель с заниженными токовыми значениями. Задержка в отключении предохранителями электрической сети может стать причиной пожара.

Автоматические выключатели часто используются в качестве коммутационных переключений. Частые их включения и отключения, а также непригодность по причине ограниченного срока службы требует их замены. Сегодня целесообразно приобретать аппараты защиты в специализированных магазинах. На рынке велика вероятность покупки некачественной подделки, что чревато возникновением пожара при возможных перегрузках или коротких замыканиях в электрической сети.

По материалам А. А. Пукача, главного специалиста по пожарной безопасности РУП «МБИ»