Способы прожигания поврежденных мест изоляции кабелей. Прожигание кабелей - пусконаладочные работы при монтаже электроустановок

Страница 49 из 56

§ 66. Прожигание кабелей
Для более точного нахождения места повреждения в кабелях, как указывалось ранее, требуется, чтобы переходное сопротивление в месте повреждения было наименьшим. Однако при пробое дефектных кабелей во время их испытания повышенным напряжением в канале искрового разряда происходит разложение маслоканифольной массы с образованием газов, способствующих погасанию дуги и деионизации разрядного промежутка, который затем заполняется кабельной массой и изоляционные свойства его в какой-то мере восстанавливаются. Такой вид повреждения получил название заплывающий пробой и встречается преимущественно в соединительных муфтах. Но даже и при отсутствии заплывающего пробоя требуется снизить переходное сопротивление в месте повреждения, прежде чем приступить к отысканию этого места.
Для этой цели поврежденный кабель прожигают. Прожигание кабеля производят на постоянном токе многократным подъемом напряжения на нем, сначала обычной кенотронной установкой, а затем более мощной, в частности газотронной, или на полупроводниковых выпрямителях, и на переменном токе от соответствующих трансформаторов.
Специальные установки для прожигания кабелей промышленность не выпускает. Поэтому наладочные организации их собирают на месте.

Рис. 208. Комбинированный акустический и индукционный прибор АИП-3:
а - внешний вид, б - схема
Для проведения пусконаладочных работ на кабельных линиях требуется иметь довольно громоздкое и нетранспортабельное оборудование: кенотронные установки, установки для прожога кабелей, генераторы повышенной частоты, регулирующие аппараты и т. и. Кроме того, работы приходится вести на многих объектах, часто удаленных друг от друга на большие расстояния. Поэтому наладочные организации, а также многие сетевые районы, эксплуатирующие кабельные сети, оборудуют для себя передвижные лаборатории, размещая необходимое испытательное оборудование, аппараты и приборы в кузове автобуса или грузовой машины.

Рис. 209. Принципиальная схема кенотронно-газотронной установки: В-вентиль (кенотрон), Р - рубильник, ЗР - заземляющий разъединитель, Тр1 - трансформатор газотрона, Тр2 - испытательный трансформатор, ТрЗ - трансформаторы накала, Тр4 - регулировочный трансформатор, К1 - магнитный контактор для включения газотронного устройства, К2 - магнитный контактор для включения кенотронного устройства, КЗ - магнитный контактор для включения
высокочастотного генератора, М - привод высокочастотного генератора, ГВЧ- генератор высокой частоты, Вгвч - возбудитель генератора высокой частоты, Я - переключатель
На рис. 209 приведена схема кенотронно-газотронной установки, изготовленная Мосэнерго и смонтированная в кузове автомашины ГАЗ-51. Эта установка содержит кенотронное устройство с кенотронами К типа КР-220 на ток до 100 мА при обратном напряжении до 10 кВ и типа В-1-0,3/70 на ток 300 мА при обратном напряжении до 70 кВ, и газотронное устройство на газотронах ВГ-237 на ток до 10 А и обратное напряжение до 10 кВ. Переход на работу с одного устройства на другое осуществляют переключателем Я, управляемым с помощью изолирующей тяги. Кроме того, установка имеет генератор повышенной частоты 1000 Гц, приводимый в движение синхронным двигателем. Дополнительно в автомашине размещают и другие аппараты (для отыскания места повреждения, мегомметры, переносные приборы), а также защитные средства по технике безопасности, необходимые при проведении измерений и испытаний кабельных линий.

Контрольные вопросы
Какие работы выполняют перед включением кабельной линии в работу после ее монтажа?
Каковы особенности испытания кабеля повышенным напряжением?
Какие меры безопасности должны соблюдаться при измерении изоляции кабеля мегомметром и при испытании его повышенным напряжением?
Перечислите относительные и абсолютные методы отыскания места повреждения кабелей. Какими методами пользуются для определения места заплывающего пробоя?
В чем сущность петлевого метода отыскания места повреждения кабеля?
Как отыскивают место повреждения индукционным и акустическим методами и при каких условиях их можно применять?
В чем сущность импульсного метода определения места повреждения кабеля и при каких видах повреждения его можно применять?
Как отыскивают место повреждения кабеля методом колебательного разряда, в чем его преимущества и недостатки?
Для чего прожигают кабель при отыскании места его повреждения?
Каким оборудованием и приборами оснащают наладочный участок для ведения пусконаладочных работ по кабельным линиям?

Доброе время суток, друзья.

Сегодня продолжим цикл статей по ремонту силового кабеля. Рассмотрим порядок прожига изоляции специальной установки

Для эффективного использования существующих методов определения места повреждения кабельных линий необходимо, чтобы переходное сопротивление изоляции в месте повреждения было от единиц до десятков кОм.

В большинстве случаев для этого необходимо прожигание изоляции кабельных муфт, прожигание изоляции кабельных жил вместе их повреждения и разрушение металлического спая (сварки) жил кабеля и оболочки при однофазных повреждениях.

После снижения сопротивления в месте повреждения используется один из самых эффективных методов — акустический.

В случае невозможности определения места однофазного повреждения на трассе кабельной линии акустическим методом (сильные акустические помехи, большая глубина прокладки кабеля, отсутствие документации на прокладку кабеля и т.д.) производят прожигание места повреждения с помощью силовой прожигающей установки в целях перевода однофазного повреждения в междуфазное (двухфазное).

Определение места повреждения в этом случае осуществляют индукционным методом.

Описание методов определения мест повреждений кабельных линий приведены в предыдущих статьях.

Прожигание производят за счет энергии, выделяющейся в канале пробоя. При этом происходит обугливание изоляции в месте повреждения и снижение переходного сопротивления.

Следует отметить, что прожигание также позволяет сравнительно просто выявлять повреждения в концевых заделках и на вскрытых кабелях по нагреву, появлению дыма и запаха гари. Следует иметь в виду, что эффективный прожиг имеет место лишь до тех пор, пока значение сопротивления в месте повреждения имеет тот же порядок, что и внутреннее сопротивление прожигательной установки.

Практически нельзя создать прожигательную установку, обеспечивающую достаточно высокое напряжение и малое внутреннее сопротивление. Поэтому единственно целесообразным методом прожигания является ступенчатый способ

Сущность его состоит в смене источников питания по мере снижения напряжения пробоя и сопротивления в месте повреждения. Источник питания более низкого напряжения легче сконструировать с меньшим внутренним сопротивлением. В настоящее время прожигающие установки имеют от 3 до 6 ступеней прожигания.

Прожигание может проводиться как на постоянном, так и на переменном токе. Верхние ступени прожигания выполняются на выпрямленном напряжении, а последняя ступень на переменном напряжении.

Рассмотрим три основных случая прожигания в силовых кабелях.

1. Прожигание изоляции кабельных муфт .

В кабельных муфтах возникают повреждения, вызванные дефектом монтажа, а также воздействием климатических факторов (возникновение трещин и пустот в мастике). Данный вид повреждений выявляется при профилактических испытаниях.

С помощью испытательной высоковольтной установки на поврежденной жиле кабеля, поднимается напряжение до пробоя.

При этом, если после нескольких пробоев напряжение пробоя не снижается или при сниженном напряжении электрическая прочность вновь возрастает, то такой характер процесса указывает на повреждения соединительных (и очень редко концевых) муфт.

В соединительных муфтах часто образуются трещины, пустоты, играющие роль как бы разрядников в газовой среде. Газы образуются вследствие разложения кабельной массы под действием дуги.

В момент пробоя в таких полостях давление резко повышается, способствуя гашению дуги. Кроме того, разряды в муфтах по более удлиненным, чем в кабеле, путям расплавляют кабельную массу, заливая канал разряда свежей массой. Такие пробои носят название «заплывающий пробой».

Если через 5 — 10 мин непрерывного повторения пробоев разрядное напряжение не снижается, прожигание следует прекратить. Для определения места повреждения кабельной линии в этом случае необходимо использовать один из методов, наиболее соответствующий значению достигнутого переходного сопротивления.

2. Прожигание изоляции кабеля.

При профилактических испытаниях повреждение может быть выявлено непосредственно в кабеле. При этом, если изоляция хорошо пропитана маслом, пробои могут повторяться длительное время до 5 — 10 мин, а иногда и дольше.

После многократного повторения разрядов напряжение пробоя начинает снижаться, что позволяет (при максимальном значении тока испытательной установки) иметь повышенную частоту пробоев.

Как только напряжение пробоя снизится до более низких значений, включают прожигательную установку на верхнюю ступень прожигания.

После того как произойдет осушение и обугливание изоляции, процесс непрерывного чередования заряда и разряда в кабеле переходит в устойчивое протекание тока через место повреждения с постепенным снижением переходного сопротивления.

При этом, как только удается снизить напряжение прожигания, необходимо переключить прожигательную установку на более низкую ступень прожигания. В процессе прожигания сопротивление в месте повреждения может увеличиться и в этом случае необходимо вернуться на более высокую ступень прожигания, чтобы добиться снижения сопротивления в месте повреждения и напряжения прожигания. На низких ступенях прожигания при больших токах в канал повреждения попадают частицы расплавленного металла, как жилы, так и оболочки кабеля, что вызывает значительное снижение сопротивления в месте повреждения. При образовании сплошного металлического канала переходное сопротивление снижается до долей Ом.

В случае, когда необходимо перевести однофазное повреждение в междуфазное, используется схема, изображенная на рис.11.

С помощью прожигательной установки осуществляется прожигание изоляции поврежденной жилы L3 кабеля. Испытательная установка постоянного тока включена на две неповрежденные жилы и через разрядник к поврежденной жиле L3.

Емкость двух жил кабеля заряжается с помощью испытательной установки до напряжения пробоя разрядника, которое устанавливается равным 5 — 10 кВ, и импульс тока разряда разрушает образующийся под действием тока от прожигательной установки проводящий мостик в месте повреждения.

Периодическое создание за счет тока прожигания и разрушение вследствие тока разряда емкости двух неповрежденных жил проводящего мостика увеличивает объем разрушения изоляции.

Наличие напряжения от испытательной установки на неповрежденных жилах кабеля в переходном режиме увеличивает вероятность пробоя этих жил на поврежденную. В случае пробоя становится невозможным поднять напряжение от испытательной установки, вследствие чего перестает срабатывать разрядник.

Следует отметить, что не всегда удается перевести однофазное замыкание в междуфазное, а увеличение напряжения испытательной установки и напряжения срабатывания разрядника может привести к пробою изоляции жил кабеля в другом месте.

Рис. 11. Схема подключения оборудования при переводе однофазного повреждения в междуфазное (двухфазное):

1 — испытательная установка постоянного тока; 2 — прожигательная установка; 3 — разрядник; 4 — поврежденный кабель

В случае, когда прожигание происходит в течение длительного времени при постоянном токе от прожигательной установки, а сопротивление в месте повреждения не снижается и составляет около 1000 — 5000 Ом, прожигание следует прекратить, так как место повреждения с отверстием в оболочке кабеля может находиться во влажной среде.

Снизить сопротивление в месте дефекта при таких повреждениях не удается.

3. Разрушение металлического спая (сварки) при однофазных повреждениях.

Если через поврежденную жилу кабеля длительно протекал ток однофазного короткого замыкания на оболочку, то в месте повреждения возможно сваривание токоведущей жилы с экранирующей оболочкой.

Разрушить место сварки прожиганием часто не удается, без чего не всегда можно определить место повреждения на трассе кабельной линии.

Для разрушения места спая можно использовать батарею конденсаторов, емкость которой изменяется в зависимости от их соединения (параллельное, последовательное) от 5 до 200 мкФ при напряжении заряда 30 и 5 кВ соответственно.

При этом дополнительно используется емкость неповрежденных жил кабеля относительно оболочки.

Конденсаторы, подключенные к поврежденной жиле и оболочке кабеля через управляемый разрядник, заряжаются от высоковольтной испытательной установки.

При импульсном разряде конденсаторов происходит разрушение проводящего спая за счет ударных электродинамических воздействий, сопровождающих протекание тока разряда.

При достаточно прочных спаях, когда подобным способом разрушить их не удается, используют «отжигающие» установки, представляющие собой регулируемые выпрямительные устройства с пределами измерения выпрямленного тока от нуля до 1000 А.

В этом случае разрушение спая происходит за счет его расплавления при прохождении через него тока большой величины.

Нарушение электрической прочности изоляции происходит по различным причинам. Основными из них являются: механические или коррозийные повреждения защитных оболочек (свинцовой, алюминиевой, пластмассовой), что приводит к нарушению герметичности и попаданию влаги в изоляцию; заводские дефекты (трещины или сквозные отверстия в защитных оболочках); дефекты монтажа соединительных и концевых муфт кабелей (не пропаянные шейки муфт, надломы изоляции, неполная заливка мастикой и т.п.); осушение изоляции вследствие местных перегревов кабеля; старение изоляции.

Однофазные повреждения - самый распространенный вид повреждений силовых кабельных линий напряжением 1-10 кВ. При этом виде повреждений одна из жил кабеля замыкается на его экранирующую оболочку. Однофазные повреждения можно разделить на три группы по значению переходного сопротивления в месте замыкания. К первой группе относятся повреждения с переходным сопротивлением, равным десяткам и сотням мегаом (заплывающий пробой). Ко второй группе относятся повреждения с переходным сопротивлением от единиц ом до сотен килоом и к третьей группе - повреждения с сопротивлением, близким к нулю.

Междуфазные повреждения составляют около 20% всех видов повреждений кабельных линий. Их можно разделить на две группы. К первой относятся повреждения с переходным сопротивлением в месте дефекта, близким к нулю, и ко второй группе - с сопротивлением от единиц килоом до сотен мегаом. В первом случае часто все три жилы свариваются между собой и с экранирующей оболочкой. При большом токе короткого замыкания кабель может перегореть на две части. При междуфазных повреждениях, относящиеся ко второй группе, обычно между жилами и оболочкой кабеля имеется переходное сопротивление и замыкание между собой двух жил происходит через экранирующую оболочку. Замыкание двух жил между собой без замыкания на оболочку происходит редко.

Данный вид повреждения образуется из-за перемещения слоев почвы в местах расположения муфт, вследствие чего происходит вытягивание жил кабеля, а в муфтах, как правило, разрыв жил (растяжка). Разрыв жил кабельных линий может произойти и в целом месте из-за различных механических воздействий или заводского брака.

В пластмассовой наружной защитной оболочке силовых кабелей могут возникать повреждения, вызванные механическими воздействиями при прокладке кабеля или перемещении почвы. Влага, попадающая через эти повреждения на экранирующую оболочку кабеля, вызывает ее коррозию и выход кабеля из строя, что может произойти под рабочим напряжением. Поэтому выявление повреждений защитной пластмассовой оболочки является важной задачей. Следует учесть, что определить повреждения данного вида можно только в том случае, если все муфты на трассе кабеля изолированы от земли.

В настоящее время для определения места повреждения силовых кабельных линий используются передвижные измерительные лаборатории с набором стационарно размещенного оборудования и переносных приборов. Перечень оборудования и приборов, необходимых для определения места повреждения силовых кабелей, указан в разд. 5.

После выполнения всех мер безопасности при работах на кабельных линиях (см. приложение) приступают к определению вида повреждения. С помощью омметра и мегаомметра на разземленном кабеле производят измерение сопротивления изоляции между жилами; каждой жилой и оболочкой кабеля. Данными приборами выявляются однофазные и междуфазные повреждения с сопротивлением в месте дефекта от нуля до сотен килоом. При большом сопротивлении часто не удается определить вид повреждения указанными приборами, тогда используют высоковольтную испытательную установку. Поочередно, испытывая все три жилы кабельной линии выпрямленным напряжением постоянного тока относительно оболочки кабеля, выявляют вид дефекта кабеля. Таким способом выявляются повреждения вида: "заплывающий пробой", однофазные и междуфазные, разрывы (растяжки) кабеля, повреждения в концевых воронках.

Основным назначением прожигания дефектной изоляции является снижение переходного сопротивления в месте дефекта, что позволяет применять известные методы как для определения расстояния до места повреждения кабеля, так и места повреждения непосредственно на трассе кабельных линий. Для эффективного определения расстояния до места повреждения и самого места повреждения требуется, чтобы переходное сопротивление в месте дефекта было в пределах от десятков ом до единиц килоом.

После снижения сопротивления в месте повреждения используется один из самых эффективных методов - акустический. В случае невозможности определения места однофазного повреждения на трассе кабельной линии акустическим методом (сильные акустические помехи, большая глубина прокладки кабеля, отсутствие документации на прокладку кабеля и т.д.) производят прожигание места повреждения с помощью силовой прожигающей установки в целях перевода однофазного повреждения в междуфазное (двухфазное). Определение места повреждения в этом случае осуществляют индукционным методом (п. 4.3).

Прожигание производят за счет энергии, выделяющейся в канале пробоя. При этом происходят обугливание изоляции в месте повреждения и снижение переходного сопротивления. Следует отметить, что прожигание также позволяет непосредственно и просто выявлять повреждения в концевых заделках и на вскрытых кабелях по нагреву, появлению дыма и запаха гари. Следует иметь в виду, что эффективный прожиг имеет место лишь до тех пор, пока значение сопротивления в месте повреждения имеет тот же порядок, что и внутреннее сопротивление прожигательной установки. Практически нельзя создать прожигательную установку, обеспечивающую достаточно высокое напряжение и малое внутреннее сопротивление. Поэтому единственно целесообразным методом прожигания является ступенчатый способ. Сущность его состоит в смене источников питания по мере снижения напряжения пробоя и сопротивления в месте повреждения. Источник питания более низкого напряжения легче сконструировать с меньшим внутренним сопротивлением. В настоящее время прожигающие установки имеют от 3 до 6 ступеней прожигания.

При профилактических испытаниях повреждение может быть выявлено непосредственно в кабеле в целом месте. При этом, если кабель хорошо пропитан маслом, пробои могут повторяться длительное время до 5-10 мин, а иногда и дольше. После многократного повторения разрядов напряжение пробоя начинает снижаться, что позволяет (при максимальном значении среднего тока потребляемой установкой) иметь повышенную частоту пробоев. Как только напряжение пробоя снизится до более низких значений включают прожигательную установку на верхнюю ступень прожигания. После того, как произойдет осушение и обугливание изоляции, процесс непрерывного чередования заряда и разряда в кабеле переходит в устойчивое протекание тока через место повреждения с постепенным снижением переходного сопротивления. При этом как только удается снизить напряжение прожигания, необходимо переключить прожигательную установку на более низкую ступень прожигания. В процессе прожигания сопротивление в месте повреждения может увеличиться и в этом случае необходимо вернуться на более высокую ступень прожигания, чтобы добиться снижения сопротивления в месте повреждения и напряжения прожигания. На низких ступенях прожигания при больших токах в канал повреждения попадают частицы расплавленного металла как жилы, так и оболочки кабеля, что вызывает значительное снижение сопротивления в месте повреждения. При образовании сплошного металлического канала переходное сопротивление снижается до долей ома. В случае, когда необходимо перевести однофазное повреждение в междуфазное, используется схема, изображенная на рис. 1.

С помощью прожигательной установки осуществляется прожигание изоляции поврежденной жилы А кабеля. Испытательная установка постоянного тока включена на две неповрежденные жилы и через разрядник к поврежденной жиле А. Емкость двух жил кабеля заряжается с помощью испытательной установки до напряжения пробоя разрядника, которое устанавливается равным 5-10 кВ, и импульс тока разряда разрушает образующийся под действием тока от прожигательной установки проводящий мостик в месте повреждения. Периодическое создание за счет тока прожигания и разрушение вследствие тока разряда емкости двух неповрежденных жил проводящего мостика увеличивает объем разрушения изоляции. Наличие напряжения от испытательной установки на неповрежденных жилах кабеля в переходном режиме увеличивает вероятность пробоя с этих жил на поврежденную. В случае пробоя становится невозможным поднять напряжение от испытательной установки, вследствие чего перестает срабатывать разрядник. Следует отметить, что не всегда удается перевести однофазное замыкание в междуфазное.

В случае, когда прожигание происходит в течение длительного времени при постоянном токе от прожигательной установки, а сопротивление в месте повреждения не снижается и составляет около 1000-5000 Ом, прожигание следует прекратить, так как место повреждения с отверстием в оболочке кабеля может находиться в воде. Снизить сопротивление в месте дефекта при таких повреждениях не удается.

Если через поврежденную жилу кабеля длительно протекал ток однофазного короткого замыкания на оболочку, то в месте повреждения возможно сваривание токоведущей жилы с экранирующей оболочкой. Разрушить место сварки прожиганием часто не удается, без чего не всегда можно определить место повреждения на трассе кабельной линии. Для разрушения места сварки нужно собрать схему посылки высоковольтной волны от заряженного конденсатора (рис. 2). Емкость конденсатора выбирается максимальной и при этом можно подключить к установке емкость неповрежденных кил кабеля. При посылке высоковольтной волны от заряженного конденсатора за счет ударных динамических усилий при импульсном разряде происходит разрушение проводящего мостика. Однако часто место сварки оказывается достаточно прочным и этот метод так же не дает результата. В этом случае для разрушения металлического спая можно использовать схему, показанную на рис. 3. Выпрямительную установку трехфазного тока подключают к поврежденной жиле кабеля на несколько секунд, в течение которых через место повреждения протекает большой ток (до 400 А), разогревающий спай в месте повреждения и разрушающий его. Но даже с помощью выпрямительной установки не всегда можно разрушить металлический спай в месте повреждения, особенно на кабелях ААБ.


+ Акустический метод или метод удара
Мост одинарный Р333

Как ищут повреждения кабелей электрики

При схожести принципов поиска повреждений в силовых кабелях для поиска повреждений удобнее использовать другие приёмы и методы. Стоит заметить, что электрикам во многом искать дырки в своих кабелях проще, ибо многие "ребусы" типичные для поиска повреждений кабелей связи здесь решать не нужно. Например, электрики-кабельщики практически не используют мостовых схем измерения и контактный метод поиска (штыри) , да и рефлектометр после хорошего прожига показывает не "кофейную гущу". Связано это с тем, что силовые высоковольтные кабеля выдерживают напряжение около 30 кВ и ток в сотни Ампер, соответственно могут быть использованы методы прожига и удара , описанные далее.

Для поиска повреждений и для испытаний кабелей и оборудования электрикам недостаточно переносных приборчиков и используется целая передвижная лаборатория на базе какого-либо автомобиля. Обычно в российском исполнении такой автомобиль имеет на кузове надпись ЛВИ, что расшифровывается как лаборатория высоковольтных испытаний. При этом оборудование лаборатории в основном состоит из жёстко закреплённых в кузове автомобиля установок. Учитывая, что в схеме ЛВИ используются большие напряжения и токи, некоторая часть оборудования выполняет защитные функции.

Высоковольтный отсек лаборатории высоковольтных испытаний



Пульт управления лаборатории высоковольтных испытаний

Работа ЛВИ начинается с большого количества количество защитных мер. Шутки, описанные в приколе "самый контактный метод поиска " здесь смертельно опасны. Работая с электриками, начинаешь понимать смысл многих пунктов из ПУЭ.

Высоковольтные испытания кабеля

Любопытно, что зачастую поиск повреждения начинается даже без проверки кабеля мегомметром. Начинают с подачи в кабель испытательного напряжения. Подобное начало не соответствует описанному в методиках порядку работ, но во многом оправдано. Изоляция "выстрелившего" кабеля может быть более 10 Мом, что, в общем-то, соответствует норме и всё решает именно проверка кабеля повышенным напряжением.

Напряжение постепенно поднимают до 30-50 кВ. Как правило, в повреждённом кабеле возникает пробой и срабатывает защита блока высоковольтных испытаний. Лабораторию переключают в другой режим - режим прожига .

Прожиг высоковольтного электрокабеля

Подключается установка прожигающая. На фотографии пульта управления это большой блок кубической формы слева внизу. Установка выдаёт в кабель высокое напряжение, но уже без отключения при пробое. Установка прожигающая имеет переключатель напряжений, и оператор может изменять соотношение ток-напряжение в мощности установки. Начинают с большого напряжения и при возникновении устойчивого пробоя напряжение уменьшают в пользу тока, добиваясь полного сплавления жилы кабеля в месте повреждения.

Химия и физика этого процесса заключается в образовании плотной угольной корки в месте пробоя кабеля. Подобным методом добиваются того, что сопротивление между повреждённой жилой и "землёй" снижается до 1-5 Ом. Если кабель лежит не в грунте, а проложен по эстакаде, то поиск повреждения на этом этапе может быть закончен. Кабель при прожиге в месте повреждения начинает дымить и трещать, и повреждение легко находится внешним осмотром.

Измерение ВВ кабеля измерителем неоднородности линий

После удачного прожига измерение линии рефлектометром не вызывает затруднений с определением расстояния до повреждения. Место повреждения определяется как плотное "короткое" и на рефлектрограмме отображается очень отчётливо. Коэффициент укорочения на высоковольтном кабеле выставляют независимо от марки кабеля в 1,87 .

Микрофон для
акустического
метода поиска
повреждений

Кстати штатная комплектация ЛВИ предусматривает наличие рефлектометра или измерителя неоднородности линий. В советские времена в комплектацию входили знакомые до боли измерители неоднородности линий Р5-10, а в настоящее время это импульсный рефлектометр РИ-10М.

Акустический метод поиска повреждений

Для поиска повреждения кабеля проложенного в грунте используется ещё один блок - генератор высоковольтных импульсов - ГВИ (на фото пульта управления внизу справа). В ГВИ напряжение в кабель подаётся последовательностью коротких импульсов с довольно большой мощностью (используется накоплении энергии конденсатором). Вся энергия импульса выделяется в месте повреждения изоляции, создавая при этом громкий сухой щелчок (удар). Щелчки настолько громкие, что их звук иногда слышен даже сквозь 70 см грунта как негромкие хлопки.

Вместе с блоком ГВИ используется ещё один метод называемый акустическим. Суть его в прослушивании грунта специальным микрофоном (тоже иногда входит в комплектацию ЛВИ в составе поискового прибора). Как уже отмечалось, иногда щелчки пробоя при работе ГВИ слышны без какого-либо оборудования, но не всегда трасса проходит в тихих местах и не всегда кабель лежит на глубине 60-70 см. Для таких случаев и применяется акустический метод, то есть прослушивание грунта микрофоном.

Для определения трассы и места повреждения электрического кабеля используется также индукционный метод. Собственно суть метода описана на странице Поиск трассы кабеля кабелеискателем . Применительно к высоковольтным кабелям не используются котактный метод поиска (штыри) . Как правило, кабель дожигается до такой степени, что повреждения легко локализируются одной антенной. В месте повреждения сигнал не фиксируется (не затухает) и слышен очень отчётливо, поиск проводится на вертикальной катушке (по минимуму).

Использовать подобные технологии для кабелей связи, увы, рискованно. Частенько подача высокого напряжения, например, в ПРППМ может "дожечь" повреждение (Поиск повреждений методом прожигания напряжением фазы (220 Вольт)) и уменьшить сопротивление повреждения до нескольких кОм, и нередки случаи, когда длительное использование связки ГИС-УМГИС снижало сопротивление повреждения. Но использовать подобные методы следует очень осторожно по двум причинам.

Если кабельная линия повреждена, то это чревато экономическими потерями при передачах электрического тока, может возникнуть короткое замыкание, что приведет к поломке запитанных приборов или подстанций. При нарушении целостности изоляционного материала может возникнуть опасность удара электрическим током.

Поиск повреждений кабельный линий

Повреждение линии может стать причиной отключения от электропитания жилых домов, хозяйственных объектов, системы управления и контроля цехов и предприятий, транспортных средств. Отыскивание нарушений в роботе кабельной линии имеет первоочередное значение.

Какие бывают повреждения

Подземные и надземные линии передачи электрического тока могут повреждаться по многим причинам. Самые распространены следующее ситуации:

  1. Замыкание одной или более жил на землю;
  2. Замыкание нескольких жил одновременно между собой;
  3. Нарушение целостности жил и заземление их как оборванных;
  4. Обрыв жил без заземления;
  5. Возникновение коротких замыканий даже при незначительном повышении напряжения (заплывающий пробой), которые пропадают при нормализации напряжения;
  6. Нарушение целостности изоляционного материала.

Для установления истинного типа нарушения передачи электроэнергии пользуются специальным прибором – мегаомметром.


Мегаомметр

Предполагаемый поврежденный кабель отсоединяют от источников питания и рабочего прибора. На обоих концах провода измеряют такие показатели:

  • Фазной изоляции;
  • Линейной изоляции
  • Отсутствие нарушений целостности жил, проводящих электрический ток.

Этапы определение мест повреждения кабельных линий

Отыскивание проблематичных зон в кабеле включает три основных этапа, благодаря которым достаточно быстро устраняется нерабочий участок:



Первый этап осуществляется с использованием специального оборудования. В этих целях используют трансформаторы, кенотрономы или же приборы способные генерировать высокие частоты. При прожигании за 20 — 30 сек показатель сопротивления значительно падает. Если в проводнике присутствует влага, то необходимая процедура прожигания проходит намного дольше и максимальное сопротивление, которого удается достигнуть составляет 2 -3 тыс Ом.


АИП-70 установка для прожигания кабеля

Намного дольше происходит этот процесс в муфтах, при этом показатели сопротивления могут изменятся волнообразно, то повышаются, то обратно падают. Процедуру прожигания проводят до тех пор, пока не наблюдается линейное понижение сопротивления.

Сложность определение места повреждения кабеля состоит в том, что длина кабельной линии может достигать несколько десятков километров. Поэтому на втором этапе нужно определить зону повреждения. Чтобы справиться с поставленной задачей используют эффективные методики:

  • Методика измерения ёмкости проводника;
  • Методика зондирующего импульса;
  • Создание петли между жилами;
  • Создание в проводнике колебательного разряда.

Выбор методики зависит от предполагаемого типа повреждений.

Емкостный метод

На основе емкости проводника вычисляют длину от свободного конца проводника до зоны разрыва жилы.


Схема определения повреждений емкостным методом

Применяя переменный и постоянный ток измеряют емкость жилы, что повреждена. Расстояние измеряют, основываясь на том, что емкость проводника напрямую зависит от его длины.

с1/lx = c2/l – lx,

где, c1 и c2 – емкость кабеля на обоих концах, l –длина исследуемого проводника, lх – искомое растения до места предполагаемого обрыва.

Из представленной формулы не трудно определить длину кабеля до зоны обрыва, которая равняется:

lх = l * c1/(c1 + c2).

Импульсный метод

Методика применима практически во всех случаях повреждения проводника, за исключением заплывающих пробоев, причиной которых является повышенная влажность. Поскольку в таких случаях сопротивление в проводнике свыше 150 Ом, что является недопустимым для импульсного метода. Он основывается на подаче, с помощью переменного тока, импульса-зонда к поврежденной области и улавливании ответного сигнала.


Временная развертка зондирующих отраженных сигналов при импульсном методе определения мест повреждения: 1, 2, …, m – единичные процессы, повторяющиеся с частотой 500 — 1000 Гц.

Эта процедура осуществляется с помощью специального оборудования. Поскольку скорость передачи импульса постоянная и составляет 160 метров за микросекунду, то легко рассчитать расстояние до зоны повреждения.

Проверка кабеля производится на приборе ИКЛ-5 или же ИКЛ-4.

Прибор ИКЛ-5

Экран сканера отображает импульсы разной формы. Исходя из формы можно примерно определить тип повреждения. Также импульсный метод дает возможность найти место где возникло нарушение в передаче электрического тока. Хорошо данный метод работает если оборвана одна или несколько жил, а плохой результат получается при коротком замыкании.

Метод петли

В этом методе применяется специальный мост из переменного тока, позволяющий измерять изменения сопротивления. Создание петли возможно при наличии хотя бы одной рабочей жили в кабеле. Если возникла ситуация с обрыванием всех жил, следует воспользоваться жилами кабеля, что располагается параллельно. При соединении перебитой жилы с рабочей по одну сторону проводника образуется петля. К противоположной стороне жил подсоединяют мост, который может регулировать сопротивление.


Схема определения повреждений кабеля методом петли

Поиск повреждения силового кабеля при помощи данной методики имеет ряд недостатков, а именно:

  • Продолжительное время подготовки и измерений;
  • Полученные измерения не совсем точны.
  • Необходимо наличие закороток.

В силу этих причин метод применяют крайне редко.

Метод колебательного РАЗРЯДА

Используют метод если причиной повреждения послужил заплывающий пробой. Метод подразумевает использование кенотронной установки, от которой по поврежденной жиле подается напряжение. Если в процессе работы возникает пробой в кабеле, там обязательно формируется разряд с устойчивой частотой колебаний.

Учитывая тот факт, что электромагнитная волна имеет постоянную скорость, то можно легко определить место повреждения на линии. Это можно сделать, сопоставив периодичность колебания и скорость.


Схема определения повреждений методом колебательного разряда

Установив область повреждения, в предполагаемую зону отправляют оператора, который найдет точку повреждения силового кабеля. Для этого используют уже совсем другие методы, такие как:

  • Акустическое улавливание искрового разряду;
  • Метод индукции;
  • Метод вращающейся рамки.

Акустический метод

Этот вариант отыскивания повреждения используется для подземных линий. При этом оператору нужно создать искровой разряд в мести нарушения работы кабеля в земле. Метод работает в случае если в точке повреждения есть возможность создать сопротивление более 40 Ом. Сила звуковой волны, которую может создать искровой разряд, зависит от глубины, на которой размещается кабель, а также от структуры грунта.


Схема определения повреждений акустическим методом

В качестве прибора способного генерировать необходимый импульс используют кенотрон, в схему которого необходимо дополнительное включить шаровой разрядник и высоковольтный конденсатор. В роли акустического приемника используется электромагнитный датчик или же датчик-пьезо. Дополнительно используют усилители звуковой волны.

Метод индукции

Это универсальный метод для поиска всех возможных типов нарушений в работе кабеля, кроме этого, позволяет определить поврежденную кабельную линию и глубину на которой она залегает под землей. Используют для обнаружения муфт, соединяющих кабель.

Схема определения повреждений кабеля методом индукции

Основой данного метода является возможность уловить изменений в электромагнитном поле, что возникают при движении тока по электрической линии. Для этого пропускают ток, что имеет частоту 850 — 1250 Гц. Сила тока при этом может находиться в пределах нескольких долей ампера до 25 А.

Зная каким образом происходят изменения исследуемого электромагнитного поля не составит труда отыскать место нарушения целостности кабеля. Для того чтобы достаточно точно определить место, можно воспользоваться выжиганием кабеля и переводом однофазного замыкание в двух- или трехфазное.

В этом случае нужно создать цепь «жила-жила». Преимуществом такой цепи является то, что ток направляется по противоположных направлениях (по одной жиле вперед, по второй – обратно). Таким образом концентрация поля значительно возрастает и отыскать место повреждения значительно легче.

Метод рамки


Схема определения повреждений кабеля методом рамки

Это хороший способ для отыскивания нерабочих зон на поверхности линии электропередач. Принцип действия очень схож с методом индукции. Подключается генератор к двум жилами или же к одной жиле и оболочке. Затем на кабель с повреждением накладывается рамка, что вращается вокруг оси.

К месту нарушения должны отчетливо проявляются два сигнала – минимум и максимум. За предполагаемой зоной сигнал не будет колебаться, не давая пиков (монотонный сигнал).