Потери в кабельных линиях 10 кв. Территория электротехнической информации WEBSOR

Требуется выбрать сечение кабеля на напряжение 10 кВ для питания трансформаторной подстанции 2ТП-3 мощностью 2х1000 кВА для питания склада слябов на металлургическом комбинате в г. Выкса Нижегородская область. Схема электроснабжения представлена на рис.1. Длина кабельной линии от ячейки №12 составляет 800 м и от ячейки №24 составляет 650 м. Кабели будут, прокладываться в земле в трубах.

Таблица расчета электрических нагрузок по 2ТП-3

Трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ составляет 8,8 кА. Время действия защиты с учетом полного отключения выключателя равно 0,345 сек. Подключение кабельной линии к РУ осуществляется через вакуумный выключатель типа VD4 (фирмы Siemens).


Расчет

Сечение кабельной линии на напряжение 6(10) кВ выбирают по нагреву расчетным током, проверяют по термической стойкости к токам КЗ, потерям напряжения в нормальном и послеаварийном режимах.

Выбираем кабель марки ААБлУ-10кВ, 10 кВ, трехжильный.

1. Определяем расчетный ток в нормальном режиме (оба трансформатора включены).

Где:
n – количество кабелей к присоединению;

2. Определяем расчетный ток в послеаварийном режиме, с учетом, что один трансформатор отключен:

3. Определяем экономическое сечение, согласно ПУЭ раздел 1.3.25. Расчетный ток принимается для нормального режима работы, т.е. увеличение тока в послеаварийных и ремонтных режимах сети не учитывается:

Jэк =1,2 – нормированное значение экономической плотности тока (А/мм2) выбираем по ПУЭ таблица 1.3.36, с учетом что время использования максимальной нагрузки Тmax=6000 ч.


Сечение округляем до ближайшего стандартного 35 мм2.

Длительно допустимый ток для кабеля сечением 3х35мм2 по ПУЭ,7 изд. таблица 1.3.16 составляет Iд.т=115А > Iрасч.ав=64,9 А.


4. Определяем фактически допустимый ток, при этом должно выполняться условие Iф>Iрасч.ав.:

Коэффициент k1, учитывающий температуру среды отличающуюся от расчетной, выбираем по таблице 2.9 [Л1. с 55] и таблице 1.3.3 ПУЭ. Учитывая, что кабель будет прокладываться в трубах в земле. По таблице 2-9 температура среды по нормам составляет +25 °С. Температура жил кабеля составляет +65°С, в соответствии с ПУЭ, изд.7 пункт 1.3.12.


Определяем по СНиПу 23-01-99 таблица 3, фактическую температуру среды, где будет прокладываться кабель, в моем случае г. Выкса. Средняя годовая температура составляет - +3,8°С.


По ПУЭ таблица 1.3.3 выбираем коэффициент k1 = 1,22.


Коэффициент k2 – учитывающий удельное сопротивление почвы (с учетом геологических изысканий), выбирается по ПУЭ 7 изд. таблица 1.3.23. В моем случае поправочный коэффициент для нормальной почвы с удельным сопротивлением 120 К/Вт составит k2=1.


Определяем коэффициент k3 по ПУЭ таблица 1.3.26 учитывающий снижение токовой нагрузки при числе работающих кабелей в одной траншее (в трубах или без труб), с учетом, что в одной траншее прокладывается один кабель. Принимаем k3 = 1.


Определив все коэффициенты, определяем фактически допустимый ток:

5. Проверяем кабель ААБлУ-10кВ сечением 3х35мм2 по термической устойчивости согласно ПУЭ пункт 1.4.17.


  • Iк.з. = 8800 А - трехфазный ток КЗ в максимальном режиме на шинах РУ-10 кВ;
  • tл = tз + tо.в =0,3 + 0,045 с = 0,345 с - время действия защиты с учетом полного отключения выключателя;
  • tз = 0,3 с – время действия максимально-токовой защиты;
  • tо.в = 45мс или 0,045 с - полное время отключения вакуумного выключателя типа VD4;
  • С = 95 - термический коэффициент при номинальных условиях, определяемый по табл. 2-8, для кабелей с алюминиевыми жилами.


Сечение округляем до ближайшего стандартного 70 мм2.

6. Проверяем кабель на потери напряжения:

Где:
r и x - значения активных и реактивных сопротивлений определяем по таблице 2-5 [Л1.с 48]. Для кабеля с алюминиевыми жилами сечением 3х70мм2 активное сопротивление r = 0,447 Ом/км, реактивное сопротивление х = 0,086 Ом/км.


Определяем sinφ, зная cosφ. Вспоминаем школьный курс геометрии.

Если Вам не известен cosφ, можно определить для различных электроприемников по справочным материалам табл. 1.6-1.8 [Л3, с 13-20].

6.2 В послеаварийном режиме:

Из расчетов видно, что потери напряжения в линии незначительные, следовательно, напряжение у потребителей практически не будет отличаться от номинального.

Таким образом, при указанных исходных данных выбран кабель ААБлУ-10 3х70.

Для удобства выполнения выбора кабеля всю литературу, которую я использовал в данном примере, Вы сможете скачать в архиве.

Литература:
  • 1. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.
  • 2. СНиП 23-01-99 Строительная климатология. 2003 г.
  • 3. Расчет и проектирование систем электроснабжения объектов и установок. Кабышев А.В, Обухов С.Г. 2006 г.
  • 4. Правила устройства электроустановок (ПУЭ). Седьмое издание. 2008г.

3. Расчет необходимых электрических величин при реконструкции электроснабжения

3.1. Общие сведения о расчете электрических величин

Целью электрического расчета линий является выбор напряжения, марки и сечения проводов и кабелей, определение потери напряжения в различных точках сети. В случае если напряжение линии задано, а провода выбраны по условию механической прочности, задача электрического расчета сводится к проверке принятого сечения проводников.

Исходными данными для электрических расчетов являются значения активных и реактивных нагрузок и распределение их вдоль линии. При выборе или проверке проводов и кабелей необходимо учитывать следующие основные положения:

1. Провода и кабели не должны перегреваться при прохождение расчетного тока нагрузки сверх допустимого значения.

2. Сечение проводников должны быть проверены по экономической плотности тока.

3. Сечения кабелей должны быть проверены на нагрев от токов короткого замыкания.

4. Отклонения напряжения на зажимах электроприемников должны находиться в пределах, допускаемых ГОСТ 13109.

Допустимые длительные токи для проводов и кабелей приведены в ПУЭ. При выборе сечений проводников по нагреву следует принимать максимальный расчетный ток для нормального, послеаварийного или эксплуатационного режима линий.

Выбранные сечения проводов и кабелей должны, кроме технических требований, удовлетворять условию экономичности. Согласно ПУЭ экономически целесообразная площадь сечения, мм 2 , определяется из соотношения:

где I – расчетный ток линии нормального режима работы, А;

I эк – нормированное значение экономической плотности тока для заданных условий работы линии; принимается по ПУЭ, А/мм 2 .

Полученное сечение проводника округляется до ближайшего стандартного.

Линии продольного электроснабжения характеризуются большой протяженностью при относительно малой плотности нагрузки. Исключение могут составлять линии с крупными сосредоточенными нагрузками.

Так для линии 10 кВ с нагрузками, не превышающими 600 кВА, расчетный ток равен 34,7 А. Для алюминиевых и сталеалюминиевых проводов при продолжительности использования максимума нагрузки в пределах 3000–5000 ч/год экономическая плотность тока I эк =1,1 А/мм 2 .

Экономически целесообразная площадь сечения:

S=34,7/1,1=31,5 (мм 2)

Поскольку минимальными сечениями, принимаемыми в линиях продольного электроснабжения 10 кВ по условию механической прочности, являются АС–35 или АС–50, проверка проводов по нагреву и экономической плотности тока при нагрузке 600–700 кВА может не проводиться. При подключении к линии крупных сосредоточенных нагрузок такую проверку следует выполнять.

3.2.Расчет потерь напряжения в линии 10 кВ продольного электроснабжения при выводе из работы тяговой подстанции о/п Катозеро и о/п Кереть

По данным нагрузок линии ПЭ табл.1.4 произведен расчет потери напряжения в линии ПЭ.

Расчетные формулы для определения потерь напряжения В:

где r 0 – активное сопротивление 1 км линии, Ом/км;

х 0 – реактивное сопротивление 1 км линии, Ом/км;

P – активная составляющая мощности, кВт;

Q – реактивная составляющая мощности, квар;

U н – номинальное напряжение в линии ПЭ, кВ;

l – расстояние до нагрузки, км.

Для провода АС–50 активное сопротивление равняется 0,65 Ом/км, реактивное 0,32 Ом/км.

Активная и реактивная составляющие мощности определяются по формулам:

(3.3)

(3.4)

где S – полная мощность нагрузки, кВА;

cosφ – коэффициент мощности нагрузок линии, для нашей линии можно принять средний коэффициент равный 0,62 .

Для примера произведем расчет потери напряжения на участке 1002,8–1007,7 км.

Электроснабжение > Выбор сечений по допустимой потере напряжения

ВОЗДУШНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ 10 кВ

Пример. Расчетная нагрузка Р трехфазной воздушной линии составляет 0,25 МВт, коэффициент мощности для нагрузок сети одинаков и равен . Произвести расчет линии 10 кВ (в населенной местности) на потерю напряжения с учетом индуктивности проводов. Материал провода - алюминий. Длина линии (см. табл. 12-6).

Коэффициент (см. табл. 5-12).
(см. табл. 5-13).

Коэффициент (см. табл. 5-9).
Определяем сечение линии

Принимаем ближайшее сечение, по условиям механической прочности для ВЛ 10 кВ, равным 35 мм2.


На основании методики и алгоритма расчетов составлена табл. 58 выбора сечений для воздушных линий, выполненных алюминиевыми или сталеалюминиевыми проводами в зависимости от длин участков линий и расчетной нагрузки, кВт.

Таблица 58. Расчетное сечение трехфазных воздушных и кабельных линий напряжением 6 и 10 кВ при потере напряжения D U до 1,5%; cos j = 0,7-1,0, мм кв.


Примечание. 1. Расчетная потеря напряжения D U до 2,5% принята для кабелей с алюминиевыми жилами напряжением 6 кВ.
2. В числителе указано сечение при напряжении 10, в знаменателе - 6 кВ.


КАБЕЛЬНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ 10 кВ

Сечение кабельной линии рассчитывают по заданной (допустимой) величине потери напряжения с учетом индуктивности линии.
Пример. Расчетная нагрузка Р трехфазной кабельной линии составляет 0,4 МВт, коэффициент мощности для нагрузок сети одинаков и равен . Произвести расчет кабельной линии напряжением 10 кВ на потерю, напряжения с учетом индуктивных сопротивлений (кабель с алюминиевыми жилами). Длина линии . Допустимая потеря напряжения .
Определяем моменты полных и реактивных нагрузок участков линии:

Коэффициент .
Среднее индуктивное сопротивление
.
Определяем расчетную величину потери напряжения

Коэффициент .
Определяем сечение линии

Принимаем ближайшее сечение, по допустимым токовым нагрузкам, равным 16 мм2.
Проверяем расчетную величину потери напряжения

Проверочный расчет показывает, что принятое сечение удовлетворяет расчетное условие.

ВОЗДУШНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ 6 кВ

Сечение проводов линии рассчитывают по заданной (допустимой) величине потери напряжения с учетом индуктивности линии.
Пример. Расчетная нагрузка Р воздушной трехфазной линии составляет 0,63 МВт, коэффициент мощности для нагрузок сети одинаков и равен . Произвести расчет воздушной линии 6 кВ (в населенной местности) на потерю напряжения с учетом индуктивности проводов. Материал провода - алюминий. Длина линии . Допустимая потеря напряжения .
Определяем моменты полных и реактивных нагрузок участков линии:

Коэффициент .
Среднее индуктивное сопротивление
.
Определяем расчетную величину потери напряжения

Коэффициент .
Минимальное сечение линии

Принимаем ближайшее сечение, по условиям механической прочности для ВЛ 6 кВ, равным 35 мм2.
Проверяем расчетную величину потери напряжения

Проверочный расчет показывает, что принятое сечение удовлетворяет расчетное условие.
Для снижения потери напряжения до 1,5% (величина, принятая в расчетах) сечение провода принимается равным 95 мм2

КАБЕЛЬНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ 6 кВ


Рассчитаем сечение кабельной линии по заданной (допустимой) величине потери напряжения с учетом индуктивности линии.
Пример. Расчетная нагрузка Р трехфазной кабельной линии составляет 1,0 МВт, коэффициент мощности для нагрузок сети одинаков и равен . Произвести расчет кабельной линии напряжением 6 кВ на потерю напряжения с учетом индуктивных сопротивлений. Кабель с алюминиевыми жилами. Длина линии . Допустимая потеря напряжения .
Определяем моменты полных и реактивных нагрузок участков линии:

Коэффициент .
Среднее индуктивное сопротивление
.
Определяем расчетную величину потери напряжения

Коэффициент .
Сечение жил кабеля

Принимаем ближайшее сечение, по условию допустимой токовой нагрузки, равным 35 мм2. Проверяем расчетную величину потери напряжения

Проверочный расчет показывает, что принятое сечение удовлетворяет расчетное условие.
Для снижения потери напряжения до 2,5% (величина, принятая в расчетах) сечение жил кабельной линии принимается равным 95 мм2

ВОЗДУШНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ ДО 1 кВ

Сечение провода воздушной линии определяют по заданной потере напряжения с учетом индуктивности линии.
Пример. Расчетная активная нагрузка Р = 20 кВт, коэффициент мощности . Произвести расчет воздушной линии напряжением 0,4 кВ на потери напряжения с учетом индуктивности сопротивлений. Длина линии . Материал провода - алюминий. Принимаем допустимые отклонения напряжения - 2,5%.
Определяем моменты активных и реактивных нагрузок участка линии:

Коэффициент .
Среднее индуктивное сопротивление
.
Определяем расчетную величину потери напряжения

Коэффициент .
Определяем сечение провода

Принимаем ближайшее сечение, по условию механической прочности и допустимой токовой нагрузки, равным 70 мм2.
Проверяем расчетную величину потери напряжения

Проверочный расчет показывает, что принятое сечение удовлетворяет расчетное условие.

КАБЕЛЬНЫЕ ЛИНИИ НАПРЯЖЕНИЕМ ДО 1 кВ

Сечение кабельной линии определяют по заданной потере напряжения с учетом индуктивности линии.
Пример. Расчетная активная нагрузка Р трехфазной кабельной линии составляет 45 кВт, коэффициент мощности . Произвести расчет кабельной линии напряжением 0,4 кВ на потерю напряжения с учетом индуктивности сопротивлений. Длина линии . Кабель с алюминиевыми жилами. Принимаем допустимые отклонения напряжения - 2,5%.
Определяем моменты полных и реактивных нагрузок участка линии:

Коэффициент .
Среднее индуктивное сопротивление
.
Определяем расчетную величину потери напряжения

Коэффициент .
Определяем сечение жил кабеля

Принимаем ближайшее сечение (не ниже табличных данных) равным 185 мм2.
Проверяем расчетную величину потери напряжения

Проверочный расчет показывает, что принятое сечение удовлетворяет расчетное условие.

ЛИНИИ ДЛЯ ОСВЕТИТЕЛЬНЫХ СЕТЕЙ

Пример. Расчетная нагрузка магистрали, питающей осветительную сеть, Р = 30 кВт. Расчетное значение (располагаемая потеря напряжения, проц., от номинального напряжения приемников при коэффициенте загрузки, трансформатора мощностью 400 кВА и при ) равно 4,6%, что при напряжении трехфазной сети у ламп U = 380/220 В даст допустимое снижение напряжения - 2,5% от номинального напряжения U ламп. Принимаем расчетный предел отклонения напряжения у ламп рабочего освещения . Сеть трехфазная с нулем напряжением 380/220 В. Провода с алюминиевыми жилами, проложенными в трубе. Длина линии . Определить сечение проводов линии.
Определяем момент нагрузки