Состав, компоненты, строение и свойства географической оболочки земли. Географическая оболочка Свойства и особенности географической оболочки

Введение

Заключение

Введение

Географическая оболочка Земли (синонимы: природно-территориальные комплексы, геосистемы, географические ландшафты, эпигеосфера) - сфера взаимопроникновения и взаимодействия литосферы, атмосферы, гидросферы и биосферы. Обладает сложной пространственной дифференциацией. Вертикальная мощность географической оболочки десятки километров. Целостность географической оболочки определяется непрерывным энерго- и массообменом между сушей и атмосферой, Мировым океаном и организмами. Природные процессы в географической оболочке осуществляются за счет лучистой энергии Солнца и внутренней энергии Земли. В пределах географической оболочки возникло и развивается человечество, черпающее из оболочки ресурсы для своего существования и воздействующее на нее.

Географическая оболочка впервые была определена П. И. Броуновым еще в 1910 г. как “наружная оболочка Земли”. Это наиболее сложная часть нашей планеты, где соприкасаются и взаимопроникают атмосфера, гидросфера и литосфера. Только здесь возможно одновременное и устойчивое существование вещества в твердом, жидком и газообразном состояниях. В этой оболочке происходит поглощение, превращение и накопление лучистой энергии Солнца; только в ее пределах стало возможным возникновение и распространение жизни, которая, в свою очередь, явилась мощным фактором дальнейшего преобразования и усложнения эпигеосферы.

Географической оболочке свойственны целостность, обусловленная связями между её компонентами, и неравномерность развития во времени и пространстве.

Неравномерность развития во времени выражается в присущих этой оболочке направленных ритмичных (периодических - суточных, месячных, сезонных, годовых и т.п.) и неритмичных (эпизодических) изменениях. Как следствие этих процессов формируются разновозрастность отдельных участков географической оболочки, унаследованность хода природных процессов, сохранение реликтовых черт в существующих ландшафтах. Знание основных закономерностей развития географической оболочки позволяет во многих случаях прогнозировать природные процессы.

Учение о географических системах (геосистемах) является одним из главных фундаментальных достижений географической науки. Оно по-прежнему активно продолжает разрабатываться и обсуждаться. Поскольку это учение имеет не только глубокий теоретический смысл в качестве ключевого базиса для целенаправленного накопления и систематизации фактического материала с целью получения нового знания. Велика и его практическая значимость, так как именно такой системный подход к рассмотрению инфраструктуры географических объектов лежит в основе географического районирования территорий, без которого невозможно выявлять и решать ни локально, а тем более глобально, какие-либо проблемы, касающиеся в той или иной мере взаимодействия человека, общества и природы: ни экологические, ни природопользования, ни вообще оптимизации взаимоотношений человечества и природной среды.

Целью контрольной работы является рассмотрение географической оболочки в ракурсе современных представлений. Для достижения цели работы следует наметить и решить ряд задач, основными из которых будут являться:

1 рассмотрение географической оболочки как материальной системы;

2 рассмотрение основных закономерностей географической оболочки;

3 определение причин дифференциации географической оболочки;

4 рассмотрение физико-географического районирования и определение системы таксономических единиц в физической географии.

1. Географическая оболочка как материальная система, ее границы, строение и качественные отличия от других земных оболочек

По С.В. Калеснику1, географическая оболочка «не просто физическая или математическая поверхность, а сложный комплекс, возникший и развивающийся под действием взаимосвязанных и взаимопроникающих друг в друга процессов, которые развёртываются на суше, в атмосфере, водах и органическом мире».

Давая определение географической оболочке, С.В. Калесник подчеркнул: 1) её комплексность, 2) многокомпонентность - природная оболочка состоит из частей - земной коры, образующей формы рельефа, вод, атмосферы, почв, живых организмов (бактерии, растения, животные, человек); 3) объёмность. «Оболочка» - понятие трёхмерное.

Следует иметь в виду, что для географической оболочки характерен ряд специфических особенностей. Она отличается прежде всего большим разнообразием вещественного состава и видов энергии, характерных для всех компонентных оболочек - литосферы, атмосферы, гидросферы и биосферы. Через общие (глобальные) круговороты вещества и энергии они объединены в целостную материальную систему. Познать закономерности развития этой единой системы - одна из важнейших задач современной географической науки.

Географическая оболочка – это область взаимодействия внутрипланетарных (эндогенных) и внешних (экзогенных) космических процессов, которые осуществляются при активном участии органического вещества2.

Динамика географической оболочки всецело зависит от энергетики земных недр в зоне внешнего ядра и астеносферы и от энергетики Солнца. Определенную роль играют также приливные взаимодействия системы Земля – Луна.

Проекция внутрипланетарных процессов на земную поверхность и последующее взаимодействие их с солнечным излучением в конечном счете отражается в формировании главных компонентов географической оболочки верхов земной коры, рельефа, гидросферы, атмосферы и биосферы. Современное состояние географической оболочки – результат ее длительной эволюции, начавшейся с возникновения планеты Земля.

Ученые выделяют три этапа развития географической оболочки: первый, самый продолжительный (около 3 млрд. лет)3, характеризовался существованием простейших организмов; второй этап продолжался около 600 млн. лет и ознаменовался появлением высших форм живых организмов; третий этап - современный. Он начался около 40 тыс. лет назад. Его особенность в том, что человек все активнее начинает влиять на развитие географической оболочки, причем, к сожалению, негативно (разрушение озонового слоя и др.).

Географическая оболочкахарактеризуется сложным составом и строением.Основные вещественные компоненты географической оболочки - это слагающие земную кору горные породы (с их формой - рельефом), воздушные массы, водные скопления, почвенный покров и биоценозы; в полярных широтах и высокогорьях существенна роль скоплений льда. Основные энергетические компоненты - гравитационная энергия, внутреннее тепло планеты, лучистая энергия Солнца и энергия космических лучей. При всей ограниченности набора компонентов сочетания их могут быть весьма многообразными; это зависит и от числа входящих в сочетание слагаемых и от их внутренних вариаций (поскольку каждый компонент - это тоже очень сложная природная совокупность), а главное - от характера их взаимодействия и взаимосвязей, т. е. от географической структуры.

А.А. Григорьев проводил верхний предел географической оболочки (ГО) на высоте 20-26 км над уровнем моря, в стратосфере, ниже слоя максимальной концентрации озона. Ультрафиолетовая радиация, губительная для живого, перехватывается озоновым экраном.

Атмосферный озон образуется в основном выше 25 км. В более низкие слои он поступает благодаря турбулентному перемешиванию воздуха и вертикальных движений воздушных масс. Плотность O3мала вблизи земной поверхности и в тропосфере. Его максимум наблюдается на высотах 20-26 км. Общее содержание озона X в вертикальном столбе воздуха колеблется от 1 до 6 мм, если его привести к нормальному давлению (1013, 2мбар) при t = 0oC. Величину X называют приведённой толщиной слоя озона илиобщим количеством озона.

Ниже границы озонового экрана наблюдается движение воздуха, обусловленное взаимодействием атмосферы с сушей и океаном. Нижняя граница географической оболочки, по Григорьеву, проходит там, где прекращают действовать тектонические силы, то есть на глубине 100-120 км от поверхности литосферы, по верхней части подкорового слоя, который влияет в сильной степени на формирование рельефа.

С.В. Калесник помещает верхнюю границу Г.О. так же, как и А.А. Григорьев, на уровне озонового экрана, а нижнюю - на уровне залегания очагов обычных землетрясений, то есть на глубине не свыше 40-45 км и не менее 15-20 км. Эта глубина - так называемая зона гипергенеза (греч. гипер- над, сверху, гeнезис- происхождение). Это зона осадочных пород, возникающих в процессе выветривания, изменения магматических и метаморфических пород, имеющих первичное происхождение.

От этих представлений о границах ГО отличаются взгляды Д.Л.Арманда. Д.Л.Арманд в состав географической сферы включает тропосферу, гидросферу и всю земную кору (силикатную сферу геохимиков), находящуюся под океанами на глубине 8-18 км и под высокими горами на глубине 49-77 км. Кроме собственно географической сферы, Д.Л.Арманд предлагает различать «Большую Географическую Сферу», включая в неё стратосферу, простирающуюся на высоту до 80 км над океаном, и эклогитовуюсферуили симу, то есть всю толщину литосферы, с нижним горизонтом которой (700-1000 км) связаны глубокофокусные землетрясения.

Очевидно, с взглядами Д.Л. Арманда согласиться нельзя. Такое толкование ГО не отвечает содержанию этого понятия. Трудно видеть в этом конгломерате сфер - от стратосферы до эклогитовой сферы - единый комплекс, новую систему со своими особыми, индивидуальными качествами. Предмет физической географии становится расплывчатым, лишённым конкретного содержания, а сама физическая география, как наука, теряет грани, сливаясь с другими науками о Земле.

Качественные отличия географической оболочки от других оболочек Земли: географическая оболочка формируется под действием как земных, так и космических процессов; исключительно богата разными видами свободной энергии; вещество присутствует во всех агрегатных состояниях; чрезвычайно разнообразна степень агрегированности вещества - от свободных элементарных частиц через атомы, ионы, молекулы до химических соединений и сложнейших биологических тел; концентрация тепла, притекающего от Солнца; наличие человеческого общества.

PAGE_BREAK--

2. Круговорот вещества и энергии в географической оболочке

За счёт противоречивого взаимодействия компонентов ГО возникает множественность систем. Например, выпадение атмосферных осадков - процесс климатический, сток выпавших осадков - гидрологический процесс, транспирация влаги растениями - биологический процесс. В этом примере явно проявляется переход одних процессов в другие. А всё вместе это - пример большого круговорота воды в природе. Географическая оболочка, её единство, целостность существует благодаря чрезвычайно напряжённому круговороту веществ и связанной с ним энергии. Круговороты можно рассматривать как чрезвычайно разнообразные формы взаимодействия компонентов (атмосфера - вулканизм). Эффективность круговоротов в природе колоссальна, так как они обеспечивают многократность одних и тех же процессов и явлений, высокую суммарную эффективность при ограниченном объёме исходного вещества, участвующего в этих процессах. Примеры: большой и малый круговорот воды; циркуляция атмосферы; морские течения; круговороты горных пород; биологические круговороты.

По степени сложности круговороты различны: одни сводятся преимущественно к кругообразным механическим перемещениям, другие сопровождаются сменой агрегатного состояния вещества, третьи сопровождаются химической трансформацией.

Оценивая круговорот по его исходному и конечному звену, видим, что вещество, вступившее в круговорот, испытывает нередко перестройку в промежуточных звеньях. Поэтому представление о круговороте входит в понятие взаимообмена вещества и энергии.

Все круговороты не являются круговоротами в точном смысле слова. Они не вполне замкнуты, и конечная стадия круговорота вовсе не тождественна его начальной стадии.

За счёт поглощения солнечной энергии зелёное растение осуществляет ассимиляцию молекул углекислого газа и воды. В результате такой ассимиляции образуется органическое вещество и одновременно выделяется свободный кислород.

Разрыв между конечной и начальной стадиями круговорота образует вектор направленного изменения, то есть развития.

Основой всех круговоротов в природе является миграция и перераспределение химических элементов. Способность элементов к миграции зависит от их подвижности.

Известен порядок воздушной миграции: водород > кислород > углерод > азот. Он показывает, как быстро атомы элементов могут вступать в химические соединения. Исключительно активен O2, поэтому от него зависит миграция большинства других элементов.

Степень подвижности водных мигрантов не всегда объясняется их собственными свойствами. Существенны и другие причины. Ослабляет миграционную способность элементов поглощение их организмами в ходе биогенной аккумуляции, поглощение почвенными коллоидами, то есть процессы адсорбции (лат. - поглощение) и осаждения. Усиливают миграционную способность процессы минерализации органических соединений, растворение и десорбция (процесс, обратный адсорбции).

3. Основные закономерности географической оболочки: единство и целостность системы, ритмичность явлений, зональность, азональность

Закон, как писал В.И.Ленин, есть отношение между сущностями. Сущность географических явлений имеет иную природу, чем сущность, например, социальных или химических объектов, поэтому отношения между географическими объектами выступают как специфические законы географической формы движения.

Географическая форма движения есть специфическое взаимодействие между атмосферой, гидросферой, литосферой, биосферой, на основе которого образуется и существует всё многообразие природных комплексов.

Так, целостность географической оболочки - важнейшая закономерность, на знании которой основывается теория и практика современного рационального природопользования. Учет этой закономерности позволяет предвидеть возможные изменения в природе Земли (изменение одного из компонентов географической оболочки обязательно вызовет изменение других); дать географический прогноз возможных результатов воздействия человека на природу; осуществить географическую экспертизу различных проектов, связанных с хозяйственным использованием тех или иных территорий.

Географической оболочке присуща и другая характерная закономерность - ритмичность развития , т.е. повторяемость во времени тех или иных явлений. В природе Земли выявлены ритмы разной продолжительности - суточный и годовой, внутривековые и сверхвековые ритмы. Суточная ритмика, как известно, обусловлена вращением Земли вокруг своей оси. Суточный ритм проявляется в изменениях температуры, давления и влажности воздуха, облачности, силы ветра; в явлениях приливов и отливов в морях и океанах, циркуляции бризов, процессах фотосинтеза у растений, суточных биоритмах животных и человека.

Годовая ритмика - результат движения Земли по орбите вокруг Солнца. Это смена времен года, изменения в интенсивности почвообразования и разрушения горных пород, сезонные особенности в развитии растительности и хозяйственной деятельности человека. Интересно, что разные ландшафты планеты обладают различной суточной и годовой ритмикой. Так, годовая ритмика лучше всего выражена в умеренных широтах и очень слабо - в экваториальном поясе.

Большой практический интерес представляет изучение и более продолжительных ритмов: 11-12 лет, 22-23 года, 80-90 лет, 1850 лет и более длительных но, к сожалению, они пока еще менее изучены, чем суточные и годовые ритмы.

Характерной чертой дифференциации (пространственной неоднородности, разделения) ГО является зональность (форма пространственной закономерности расположения), то есть закономерное изменение всех географических компонентов и комплексов по широте, от экватора к полюсам. Основные причины зональности - шарообразность Земли, положение Земли относительно Солнца, - падение солнечных лучей на земную поверхность под углом, постепенно уменьшающиеся в обе стороны от экватора.

Пояса (высшие ступени широтного физико-географического деления) разделяются на радиационные или солнечного освещения и тепловые или климатические, географические. Радиационный пояс определяется количеством поступающей солнечной радиации, закономерно убывающим от низких к высоким широтам.

Для формирования тепловых (географических) поясов имеют значение не только количество поступающей солнечной радиации, но и свойства атмосферы (поглощение, отражение, расселение лучистой энергии), альбедо зелёной поверхности перенос тепла морскими и воздушными течениями. Поэтому границы тепловых поясов нельзя совместить с параллелями. - 13 климатических или тепловых поясов.

Географическая зона - это совокупность ландшафтов одного географического пояса.

Границы же географических зонопределяются соотношением тепла и влаги. Это соотношение зависит от количества радиации, а также от количества влаги в виде осадков и стока, которые лишь частично привязаны к широте. Вот почему зоны не образуют непрерывных полос, и простирание их вдоль параллелей скорее частный случай, чем общий закон.

Открытие В.В. Докучаевым(«Русский чернозём, 1883 г.) географических зон как целостных природных комплексов было одним из крупнейших событий в истории географической науки. После этого в течение полувека географы занимались конкретизацией этого закона: уточняли границы, выделяли секторы (то есть, отклонения границ от теоретических) и т. п.

В географической оболочке, кроме зональных процессов, связанных с распределением солнечного тепла на земной поверхности, большое значение имеют процессы азональные, зависящие от процессов, происходящих внутри Земли4. Их источниками являются: энергия радиоактивного распада, главным образом урана и тория, энергия гравитационной дифференциации, вырабатываемая в процессе сокращения радиуса Земли при вращении Земли, энергия приливного трения, энергия межатомных связей минералов.

Азональные влияния на географическую оболочку проявляются в формировании высотных географических поясов, в горах, нарушающих широтную географическую зональность, и в разделении географических поясов на секторы, а зон - на провинции.

Формирование секторности и провинциальности в ландшафтах объясняется тремя причинами: а) распределением суши и моря, б) рельефом зелёной поверхности, в) составом горных пород.

Распределение суши и моря на азональность процессов ГО сказывается через степень континентальности климата. Существует немало методов для определения степени континентальности климата. Большинство учёных определяют данную степень через годовую амплитуду среднемесячных температур воздуха.

Влияние рельефа, неровностей земной поверхности и состава горных пород на ландшафты общеизвестны и понятны: на одной и той же широте в горах и на равнине леса и степи; известны моренные и карстовые ландшафты, связанные в происхождении с составом горных пород.

4. Дифференциация географической оболочки. Географические пояса и природные зоны

Наиболее крупные зональные подразделения географической оболочки - географические пояса . Они протягиваются, как правило, в широтном направлении и, по существу, совпадают с климатическими поясами. Географические пояса отличаются друг от друга температурными характеристиками, а также общими особенностями циркуляции атмосферы. На суше выделяются следующие географические пояса:

экваториальный - общий для северного и южного полушарий;

субэкваториальный, тропический, субтропический и умеренный - в каждом полушарии;

субантарктический и антарктический пояса - в южном полушарии.

Аналогичные по названиям пояса выявлены и в Мировом океане. Поясность (зональность) в океане находит свое отражение в изменении от экватора к полюсам свойств поверхностных вод (температуры, солености, прозрачности, интенсивности волнения и других), а также в изменении состава флоры и фауны.

Внутри географических поясов по соотношению тепла и влаги выделяются природные зоны . Названия зон даны по преобладающему в них типу растительности. Например, в субарктическом поясе это зоны тундры и лесотундры; в умеренном - зоны лесов (тайга, смешанные хвойно-широколиственные и широколиственные леса), зоны лесостепей и степей, полупустынь и пустынь.

Продолжение
--PAGE_BREAK--

Следует иметь в виду, что в связи с неоднородностью рельефа и земной поверхности, близостью и удаленностью от океана (а следовательно, и неоднородностью увлажнения) природные зоны различных регионов материков не всегда имеют широтное простирание. Иногда они имеют почти меридиональное направление. Неоднородны и природные зоны, протягивающиеся широтно через весь материк. Обычно они подразделяются на три отрезка, соответствующих центральному внутриконтинентальному и двум приокеаническим секторам. Широтная, или горизонтальная, зональность лучше всего выражена на больших по площади равнинах.

Благодаря разнообразию условий, создаваемых рельефом, водами, климатом и жизнью, ландшафтная сфера пространственно дифференцирована сильнее, чем во внешних и внутренних геосферах (кроме верхней части земной коры), где материя в горизонтальных направлениях отличается относительным однообразием.

Неравномерность развития географической оболочки в пространстве выражается прежде всего в проявлениях горизонтальной зональности и высотной поясности.Местные особенности (условия экспозиции, барьерная роль хребтов, степень удаления от океанов, специфика развития органического мира в том или ином районе З.) усложняют структуру географической оболочки, способствуют образованию азональных, интразональных, провинционных различий и приводят к неповторимости как отдельных регионов, так и их сочетаний.

5. Высотная поясность гор в разных географических поясах

Высотная поясность ландшафтов обусловлена изменением климата с высотой: понижением температуры на 0,6 ° С на каждые 100 м подъема и увеличением количества осадков до определенной высоты (до 2-3 км)5. Смена поясов в горах происходит в той же последовательности, что и на равнинах при движении от экватора к полюсам. Однако в горах есть особый пояс субальпийских и альпийских лугов, которого нет на равнинах. Количество высотных поясов зависит от высоты гор и особенностей их географического положения. Чем выше горы и чем ближе они расположены к экватору, тем богаче у них спектр (набор) высотных поясов. Спектр высотных поясов в горах определяется также местоположением горной системы относительно океана. В горах, находящихся вблизи океана, преобладает набор из лесных поясов; во внутриконтинентальных (аридных) секторах материков характерны безлесые высотные пояса.

6. Физико-географическое районирование как одна из важнейших проблем физической географии. Система таксономических единиц в физической географии

Районирование как универсальный метод упорядочения и систематизации территориальных систем широко используется в географических науках. Объектами физико-географического, иначе ландшафтного, районирование являются конкретные (индивидуальные) геосистемы регионального уровня, или физико-географические регионы. Физико-географический регион - это сложная система, обладающая территориальной целостностью и внутренним единством, которое обусловлено общностью географического положения и исторического развития, единством географических процессов и сопряженностью составных частей, т.е. подчиненных геосистем низшего ранга.

Физико-географические регионы представляют собой целостные территориальные массивы, выражаемые на карте одним контуром и имеющие собственные названия; при классификации же в одну группу (тип, класс, вид) могут войти ландшафты территориально разобщенные, на карте они чаще представлены разорванными контурами.

Каждый физико-географический регион представляет звено сложной иерархической системы, являясь структурной единицей регионов высших рангов и интеграцией геосистем более низких рангов.

Физико-географическое районирование имеет существенное практическое значение и находит применение для комплексного учета и оценки природных ресурсов, при разработке планов территориального развития хозяйства, крупных мелиоративных проектов и т.д.

В руководствах по районированию основное внимание уделяется системе таксономических единиц. Этой системе предпосылается перечень принципов, которые должны служить основой для диагностики регионов. Среди них чаще всего упоминаются принципы объективности, территориальной целостности, комплексности, однородности, генетического единства, сочетания зональных и азональных факторов.

Формирование физико-географических регионов - длительный процесс. Каждый регион - продукт исторического (палеогеографического) развития, в ходе которого происходило взаимодействие различных районообразующих факторов и могло неоднократно изменяться их соотношение.

Можно говорить о двух первичных и независимых рядах физико-географических регионов - зональном и азональном. Логическая соподчиненность между региональными таксонами разных рангов существует отдельно внутри каждого ряда.

Все известные схемы физико-географического районирования построены по двухрядному принципу, ибо зональные и азональные единицы выделяются независимо.

Можно различать три основных уровня районирования в зависимости от его детальности, т.е. от завершающей (нижней) ступени:

1) первый уровень включает страны, зоны и замыкается на производных зонах в узком смысле слова;

2) второй уровень включает кроме перечисленных ступеней области, подзоны и производные от них единицы, завершаясь подпровинцией;

3) третий уровень охватывает всю систему подразделений до ландшафта включительно.

Заключение

Таким образом, под географической оболочкой следует понимать непрерывную оболочку Земли, которая включает нижние слои атмосферы, верхнюю часть литосферы, всю гидросферу и биосферу, находящиеся в соприкосновении, взаимопроникновении и взаимодействии. Еще раз подчеркнем, что географическая оболочка - это планетарный (самый крупный) природный комплекс.

Многие ученые считают, что толщина географической оболочки составляет в среднем 55 км. По сравнению с размера-ми Земли это тонкая пленка.

Географическая оболочка обладает присущими только ей важнейшими свойствами:

а) в ней есть жизнь (живые организмы);

б) вещества находятся в ней в твердом, жидком и газообразном состоянии;

в) в ней существует и развивается человеческое общество;

г) ей присущи общие закономерности развития.

Целостность географической оболочки - это взаимосвязь и взаимозависимость ее компонентов. Доказательством целостности служит простой факт - изменение хотя бы одного компонента неизбежно влечет за собой изменение других.

Все компоненты географической оболочки связаны в единое целое посредством круговорота веществ и энергии, благодаря которому осуществляется и обмен между оболочками (сферами). Ритмичность характерна для живой и неживой природы. Человечество, возможно, не до конца изучило ритмику географической оболочки.

Вопросы, поднятые во введении, рассмотрены, цель работы достигнута.

Список литературы

Григорьев А. А. Опыт аналитической характеристики состава и строения физико-географической оболочки земного шара - М.: 1997 - 687с.

Калесник С. В. Общие географические закономерности Земли. - М.: 1970- 485с.

Пармузин Ю.П., Карпов Г.В. Словарь по физической географии. - М.: Просвещение, 2003 - 367 с.

Рябчиков А. М. Структура и динамика геосферы, её естественное развитие и изменение человеком. -М.: 2001.- 564с.

Физическая география материков и океанов: Учебное пособие / Под ред. А.М. Рябчикова. - М.: Высшая школа, 2002.- 592 с.

Итак, географы установили специфический объект своих исследований – географическая оболочка Земли . Она представляет собой сложное образование, состоящее из взаимодействующих главных земных сфер – литосферы, гидросферы, атмосферы, биосферы. Зона контакта сфер находится в фокусе взаимодействия Земли и космоса. В ней протекают сложные процессы.

Характерные особенности географической оболочки следующие:

1. Большое разнообразие вещественного состава . Оно значительно превышает разнообразные вещества, как в недрах Земли, так и в ее верхних (внешних) геосферах (ионосфере, экзосфере, магнитосфере). В географической оболочке вещество встречается в трех агрегатных состояниях – жидком, твердом и газообразном. В географической оболочке вещество обладает широким диапазоном физических характеристик – плотность, теплопроводность, вязкость, отражательная способность. Поражает большое разнообразие химического состава. Вещественные образования географической оболочки неоднородны по структуре . Выделяют косное, или неорганическое вещество, живое и биокосное (почва). Каждый названный тип вещества включает сотни и тысячи видов, а число видов живых организмов составляет от 1.5 до 2 миллионов (по разным оценкам).

2. Разнообразие поступающих в географическую оболочку видов энергии и форм ее преобразования . Например, световая энергия трансформируется в тепловую длинноволновую; в географической оболочке взаимодействуют потоки вещества и энергии, идущие из недр Земли и из космоса. Среди многочисленных трансформаций энергии особое место занимают процессы ее накопления. Например, в виде органического вещества, или энергии солнца, воды, магмы, биоэнергии.

3. Неравномерное распределение энергии по земной поверхности. Вызванное шарообразностью Земли, сложным соотношением суши и океана, ледников, рельефа и т.д. Все это определяет неравномерность географической оболочки. Это служит основой для возникновения разнообразных движений : потоков энергии, циркуляции воздуха, воды, почвенных растворов, миграции химических элементов, химических реакций и т.д.

4. Движения вещества и энергии связывают все части географической оболочки, обусловливая ее целостность . Можно сказать, что целостность географической оболочки – это главное ее свойство. Географическая оболочка характеризуется диалектическим единством двух важных качеств: непрерывности (континуальности) и прерывности (дискретности).

Непрерывность выражается в сплошности пространственного распространения географической оболочки, а прерывность – отражается в ее делимости на отдельные части - геосистемы. По В. С. Преображенскому, непрерывность – это взаимосвязанность, слитность, постепенность, нелокальность, беспредельная делимость; а дискретность (прерывность)- это изолированность, раздельность, скачкообразность, локальность, предельная делимость.

5. Существенное значение для возникновения и развития географической оболочки имеет совокупность планетарных факторов: масса Земли, расстояние до солнца, скорость вращения вокруг оси и по орбите, наличие магнитосферы. Все эти факторы обеспечивают определенную термодинамическую обстановку, достаточно благоприятную для осуществления разнообразных природных взаимодействий – основы географических процессов и явлений. Изучение ближайших космических объектов – планет солнечной системы – показало, что только на Земле сложились условия, благоприятные для возникновения достаточно сложной материальной системы .

6. В ходе развития географической оболочки происходило усложнение ее структуры, увеличение разнообразия вещественного состава и энергетических градиентов. На определенном этапе развития оболочки появилась жизнь – наиболее высокая форма движения материи. Возникновение жизни - закономерный результат эволюции географической оболочки. А деятельность живых организмов привела к качественному изменению природы земной поверхности.

7. В ходе развития географической оболочки возрастает ее роль как фактора собственного развития – саморазвития . Источником развития географической оболочки служит столкновение множества имеющихся в ней противоположных тенденций: поглощение и отдача тепла, снос и отложение, поднятие и опускание земной коры, жизнь и смерть, обмен веществ, испарение и конденсация, трансгрессия и регрессия моря. Главное же противоречие – зональность и азональность, как противоречие внутренних свойств и тенденций ландшафтной оболочки.

8. На достаточно высоком уровне развития географической оболочки, ее дифференциации и интеграции возникли сложные системы – природные территориальные и аквальные комплексы.

Слово «комплекс» на латинском языке означает сплетение , то есть очень тесное соединение частей целого. Комплексы могут иметь разную площадь: от географической оболочки в целом до, например, небольшого озера; от страны до небольшого района или отдельного поселения.

Компонентами географической оболочки являются воздух, вода, горные породы, живое вещество (растения, животные, человек). Все компоненты географической оболочки настолько тесно взаимосвязаны, что изменения одного из них приводит к изменению системы в целом. Например, изменение климата сказывается на изменении ледовитости морей, водности рек и озер, сменах растительных группировок. Или, форма Земли определяет характер распределения солнечной радиации температуры испарения осадки влажность воздуха ветер течения.


ГРАНИЦЫ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Ученые неодинаково проводят верхнюю и нижнюю границы географической оболочки. Некоторые считают, что границы географической оболочки очерчивают пределы распространения жизни на Земле.

Но географическая оболочка старше биосферы, и нельзя отрицать добиологический этап ее развития. Еще до появления жизни шли процессы образования массы планеты, дифференциации земного вещества, возникновения литосферы, и др.

Мы будем придерживаться мнения С.В. Калесника (1984), который в состав географической оболочки включил тропосферу (верхняя граница по тропопаузе) – она тесно взаимодействует с гидросферой и литосферой. Далее в состав географической оболочки Калесник включил гидросферу, биосферу, и верхний слой литосферы (осадочный покров). Таким образом, общая географическая оболочка составляет в среднем около 30 – 35 км (на 20 – 30 км поднимается от поверхности Земли и на 4 - 5 км опускается).

Географическая оболочка имеет своеобразную пространственную структуру: географическая оболочка трехмерна – естественную систему координат образует поверхность геоида (две координаты) и линия отвеса – третья координата; географическая оболочка сферична , поэтому ее пространство замкнуто. Далее: земная поверхность – зона наиболее активного взаимодействия геокомпонентов , в которой наблюдается наибольшая интенсивность разнообразных физико-географических процессов и явлений. По обе стороны от этой зоны (то есть вверх и вниз) интенсивность физико-географических процессов убывает и на некотором расстоянии от земной поверхности взаимодействие компонентов ослабевает, а затем и исчезает совсем. Следовательно, исчезает географическая сущность явлений. Так как это происходит постепенно, границы географической оболочки нечеткие (размытые), и поэтому исследователи по-разному проводят верхнюю и нижнюю границы.

Географическая оболочка - это целостная, непрерывная оболочка Земли, среда деятельности человека, в пределах которой соприкасаются, взаимно проникают друг в друга и взаимодействуют между собой нижние слои атмосферы, верхние слои литосферы, вся гидросфера и биосфера (рис. 1). Все сферы географической оболочки непрерывно обмениваются между собой веществом и энергией, образуя целостную и равновесную природную систему.

Географическая оболочка не имеет четких границ, поэтому ученые проводят их по-разному. Верхнюю границу совмещают с границей тропосферы (8-18 км) или с озоновым экраном (25-30 км). За нижнюю границу принимают границу земной коры (от 5 км под океанами до 70 км под горными сооружениями материков) или нижнюю границу ее осадочного слоя (до 5 км). Вещество в географической оболочке находится в трех состояниях: твердом, жидком, газообразном. Это имеет огромное значение для развития жизни и происходящих природных процессов на Земле.

Основными источниками развития всех процессов, происходящих в географической оболочке, служат солнечная энергия и внутренняя энергия Земли. Испытывает географическая оболочка и влияние космоса. Только в ней создаются условия для развития органической жизни.

Основные закономерности географической оболочки

Географической оболочке присущи следующие общие закономерности ее развития: целостность, ритмичность, круговорот веществ и энергии, зональность, азональность. Знание общих закономерностей развития географической оболочки позволяет человеку более бережно использовать природные богатства, не нанося ущерба окружающей среде.

Целостность - это единство географической оболочки, взаимосвязь и взаимозависимость ее природных компонентов (горных пород, воды, воздуха, почв, растений, животных). Взаимодействие и взаимопроникновение всех природных компонентов географической оболочки связывает их в единое целое. Благодаря этим процессам сохраняется природное равновесие. Изменение одного компонента природы неизбежно влечет за собой изменение других компонентов и географической оболочки в целом. Знание закона целостности географической оболочки имеет большое практическое значение. Если в хозяйственной деятельности человека не будет учитываться эта закономерность географической оболочки, то в ней будут происходить разрушительные процессы.

Требуется предварительное тщательное изучение территории, которая подвергается воздействию человека. Например, после осушения болота понижается уровень грунтовых вод. В результате меняется почва, микроклимат, растительность, животный мир, т. е. нарушается природное равновесие территории.

Понимание целостности географической оболочки позволяет предвидеть возможные изменения в природе, давать географический прогноз результатам воздействия человека на природу.

Ритмичность - это повторяемость тех или иных природных явлений через определенные интервалы времени, или ритмы. В природе все процессы и явления подчинены ритмам. Существуют ритмы разной продолжительности: суточные (смена дня и ночи), годовые (смена времен года), внутривековые (связанные с изменением солнечной активности - 11, 22 года и др.), многовековые (столетние) и охватывающие тысячелетия и многие миллионы лет. Их продолжительность может достигать 150-240 млн лет. С ними связаны, например, периоды активного образования гор и относительного спокойствия земной коры, похолодания и потепления климата.

Наиболее известен 11-летний ритм солнечной активности, которая определяется числом пятен, видимых на поверхности Солнца. Увеличение солнечной активности сопровождается увеличением числа пятен на Солнце и потока солнечной энергии к Земле («солнечный ветер»). Это вызывает на Земле магнитные бури, влияет на погоду и климат, здоровье человека.

Круговорот веществ и энергии - важнейший механизм развития природных процессов географической оболочки, благодаря которому осуществляется обмен веществ и энергии между ее составными частями. Выделяют различные круговороты (циклы) веществ и энергии: круговорот воды (гидрологический цикл), воздушные круговороты в атмосфере (циркуляция атмосферы), круговороты в литосфере (геологический цикл) и др.

Происходит круговорот веществ и в литосфере. Магма изливается на поверхность и образует изверженные горные породы. Под действием энергии Солнца, воды и температур они разрушаются и превращаются в осадочные породы. Погружаясь на большие глубины, осадочные породы испытывают действие высоких температур и давления, превращаются в метаморфические породы. При очень высоких температурах происходит расплавление пород, и они опять возвращаются в исходное состояние (магму).

Круговороты не замкнуты, они постоянно находятся под влиянием внешних и внутренних сил, происходят качественные изменения веществ и энергии, развитие всех компонентов природы и географической оболочки в целом. Это способствует сохранению равновесия в природе, ее восстановлению. Например, при незначительном загрязнении вода способна самоочищаться.

Главной закономерностью географической оболочки является проявление географической зональности. Географическая зональность - основной закон распределения природных комплексов на поверхности Земли, который проявляется в виде широтной зональности (последовательная смена географических поясов и природных зон). Широтная зональность - закономерное изменение природных условий на поверхности Земли от экватора к полюсам, связанное с изменением угла падения солнечных лучей. Единая и целостная географическая оболочка неоднородна на разных широтах. Вследствие неравномерного распределения солнечного тепла с широтой на земном шаре закономерно изменяется от экватора к полюсам не только климат, но и почвообразовательные процессы, растительность, животный мир, гидрологический режим рек и озер.

Наиболее крупные зональные подразделения географической оболочки - географические пояса . Они, как правило, простираются в широтном направлении, сменяют друг друга на суше и в океане от экватора к полюсам и повторяются в обоих полушариях: экваториальный, субэкваториальные, тропические, субтропические, умеренные, субарктический и субантарктический, арктический и антарктический. Географические пояса отличаются друг от друга воздушными массами, климатом, почвами, растительностью, животным миром.

В каждом географическом поясе формируется свой набор природных зон. Природная зона - зональный природный комплекс в пределах географического пояса, который характеризуется общностью температурных условий, увлажнения, сходными почвами, животным и растительным миром.

В соответствии с изменением климатических условий с юга на север, по широте, изменяются и природные зоны. Смена природных зон с географической широтой является проявлением географического закона широтной зональности. Климатические условия, особенно увлажнение и амплитуды температур, изменяются также по мере удаления от океана в глубь материков. Поэтому главная причина формирования нескольких природных зон внутри географического пояса - это соотношение тепла и влаги. (Проанализируйте по карте атласа соответствие природных зон географическим поясам.)

Каждая природная зона характеризуется определенным климатом, типом почв, растительности и животного мира. Природные зоны закономерно сменяются от экватора к полюсам и от побережья океанов в глубь материков вслед за изменением климатических условий. Характер рельефа влияет на режим увлажнения в пределах природной зоны и может нарушать ее широтное простирание.

Наряду с зональностью важнейшей закономерностью географической оболочки является азональность. Азональность - это формирование природных комплексов, связанных с проявлением внутренних процессов Земли, которые определяют неоднородность земной поверхности (наличие материков и океанов, гор и равнин на материках и др.). Наиболее ярко азональность проявляется в горах в виде высотной поясности. Высотная поясность - закономерная смена природных комплексов (поясов) от подножия гор к их вершинам (см. рис. 2). Высотная поясность имеет много общего с широтной зональностью: смена поясов при подъеме в горы происходит примерно в той же последовательности, что и на равнинах при движении от экватора к полюсам. Первый высотный пояс всегда соответствует той природной зоне, в которой расположены горы.

Основные закономерности географической оболочки - целостность, ритмичность, круговорот веществ и энергии, зональность, азональность. Знания о закономерностях развития географической оболочки необходимы для понимания процессов и явлений, происходящих в природе, предвидения последствий хозяйственной деятельности человека.

Эволюция земной коры на Земле привела к образованию атмосферы, гидросферы и биосферы. При этом сформировался планетарный природный комплекс, четыре компонента которого, то есть атмосфера, гидросфера, литосфера и биосфера находятся в постоянном взаимодействии и обмениваются веществом и энергией. Каждый компонент комплекса имеет свой химический состав, отличается присущими только ему свойствами. Они могут иметь твердое, жидкое или газообразное состояние, свою организацию вещества, закономерности развития, могут быть органическими или неорганическими.

Вступая во взаимодействие друг с другом эти природные компоненты оказывают взаимное влияют и приобретают новые свойства. Так, на земной поверхности в ходе длительного взаимодействия сфер сформировалась новая оболочка, обладающая своими, специфическими особенностями, которая была названа географической оболочкой. Учение о географической оболочке начало формироваться в начале 20 в. Географическая оболочка – основной объект физической географии.

Географическая оболочка имеет своеобразную пространственную структуру. Она трехмерна и сферична. Это зона наиболее активного взаимодействия природных компонентов, в которой наблюдается наибольшая интенсивность разнообразных физико-географических процессов и явлений. На некотором расстоянии вверх и вниз от земной поверхности, взаимодействие компонентов ослабевает, а затем и вовсе исчезает. Происходит это постепенно и границы географической оболочки – нечеткие. За верхнюю границу часто принимается озоновый слой на высоте 25-30 км. Нижнюю границуеографической оболочки часто проводят по разделу Мохоровичича, то есть по астеносфере, являющейся подошвой земной коры.

Компоненты еографической оболочки сложены веществами разного состава, находящимися в разном состоянии. Они разграничиваются системой активных поверхностей, где происходит взаимодействие вещества и трансформируются потоки энергии. К ним относятся: береговая зона, атмосферные и океанические фронты, приледниковые зоны.

Особенности географической оболочки:

1. Географическая оболочка отличается очень большой сложностью состава и разнообразным состоянием вещества;

2. В ней сосредоточена жизнь и существует человеческое общество;

3. Все физико-географические процессы в этой оболочке протекают за счет солнечной и внутренней энергии Земли;

4. Все виды энергии поступают в оболочку, трансформируются в ней и частично консервируются.

Основных свойств географической оболочки четыре.

1. Ритмичность, связанная с солнечной активностью, движением Земли вокруг Солнца, движением Земли и Луны вокруг Солнца, солнечной системы вокруг центра галактики.


2. Круговорот веществ который делится на круговороты воздушных масс и водных потоков, которые образуют круговороты воздуха и влаги, круговороты минерального вещества и литосферные круговороты, биологические и биохимические круговороты.

3. Целостность и единство, которые проявляются в том, что изменение одного компонента природного комплекса неизбежно вызывает изменение всех остальных и всей системы, как целого. К тому же, изменения, произошедшие в одном месте, отражаются на всей оболочке, а иногда на какой-либо ее части – в другом месте. Единство и целостность географической оболочки обеспечивается системой перемещения вещества и энергии.

Очень важной особенностью географической оболочки является ее способность сохранять свои основные свойства в течение всей истории своего существования. За миллионы лет на Земле изменилось расположение материков, состав атмосферы, произошло образование и развитие биосферы. При этом осталась сущность географической оболочки, как зоны контакта между геосферами, где взаимодействуют эндогенные и экзогенные силы. Сохранились и основные ее свойства: присутствие воды в трех состояниях – жидком, твердом и газообразном, наличие устойчивых границ между атмосферой, гидросферой и литосферой, постоянство радиационного и теплового балансов, постоянство солевого состава Мирового океана и т. д. Поэтому географическую оболочку называют геостатом , то есть системой, которая способна автоматически поддерживать определенное состояние природной среды. В историческом плане географическая оболочка является самоорганизующейся системой, что приближает ее к биологическим системам.

Если мысленно разрезать географическую оболочку от верхней до нижней границы, то окажется, что нижний ярус представлен плотным веществом литосферы, а верхние ярусы – более легким веществом гидросферы и атмосферы. Такое устройство географической оболочки является результатом эволюции Земли, которая сопровождалась дифференциацией вещества: с выделением плотного вещества в центре Земли и более легкого – по периферии.

Многие физико-географические явления на земной поверхности распределяются в форме полос, вытянутых вдоль параллелей, или под некоторым углом к ним. Это свойство географических явлений называется зональностью.

Все компоненты географической оболочки несут на себе печать воздействия мирового закона зональности. Зональность отмечается для: климатических показателей, растительных группировок, типов почв. В основе зональности физико-географических явлений находится закономерность поступления на Землю солнечной радиации, приход которой убывает от экватора к полюсам.

На основе сочетания поступления тепла и влаги в различные районы земли формируется географическая поясность. Выделяется ряд географических поясов. Они внутренне неоднородны, что, прежде всего, связано с зональной циркуляцией атмосферы и переносом влаги. На этом основании выделяются секторы. Как правило, их 3: два океанических (западный и восточный) и один континентальный.

Секторность – это географическая закономерность, которая выражается в смене основных природных показателей по долготе: от океанов в глубь материков. Все зональные явления определяются эндогенной энергией. Схемы зональности нарушаются орографическими условиями территории.

Высотная поясность – это закономерная смена природных показателей от уровня моря к вершинам гор. Определяется она сменой климата с высотой, в первую очередь изменением количества тепла и влаги. Впервые высотная зональность была описана А. Гумбольдтом.

Иерархия геосистем

Иерархия природной геосистемы . Природная геосистема – исторически сложившаяся совокупность взаимосвязанных природных компонентов, характеризующаяся пространственной и временной организованностью, относительной устойчивостью, способностью функционировать как единое целое, продуцируя новое вещество. Геосистемы могут быть образованиями различной размерности.

Природные геосистемы имеют иерархическую структуру. Это означает, что все геосистемы состоят из нескольких элементов, и каждая геосистема входит в качестве структурного элемента в более крупные.

Существуют три категории геосистем (по пространственным размерам): планетарные (сотни млн. км 2) – ландшафтная оболочка в целом, материки и океаны, пояса, зоны; региональные – физико-географические страны, области провинции, районы; локальные – (от нескольких м 2 до нескольких тысяч м 2) местности, урочища, подурочища, фации.

Каждому из указанных геосистемных таксонов свойственны определенные круговороты вещества и энергии определенного масштаба – большой геологический, биогеохимический, биологический.

Ландшафтная оболочка подчиняется закону иерархической организации слагающих ее частей. В ее структуре участвуют природные геосистемы различных пространственно-временных масштабов. От самых крупных и долговечных образований, таких как океаны и материки, до маленьких и очень изменчивых. Они объединяются в многоступенчатую систему таксонов, именуемую иерархией природных геосистем. Из признания факта соподчиненности разноранговых геосистем происходит методологическое правило триады, согласно которому каждая природная геосистема должна изучаться не только сам по себе, но и обязательно как распадающаяся на подчиненные структурные элементы и одновременно как часть вышестоящего природного единства.

Предложено несколько вариантов таксономической классификации природных геосистем.

Геосферы Земли - более или менее концентрические слои, охватывающие всю Землю и обладающие присущими только им характерными физическими, структурными, физико-химическими, химическими и биологическими свойствами. Геосферы подразделяются на внешние и внутренние. К внешним относятся атмосфера, гидро­сфера, земная кора. К внутренним геосферам относятся мантия и ядро. Земная кора, атмосфера и гидросфера входят в состав биосферы - сложной прерывистой оболочки Земли, являющейся средой оби­тания биоты - живого вещества планеты.

Пространство, в котором взаимопроникают и взаимодействуют литосфера, гидросфера и атмосфера, носит название географичес­кой оболочки . Географическая оболочка представляет собой единую материаль­ную систему, обладающую рядом лишь ей присущих особенностей: в ней лучистая энергия Солнца превращается в тепловую; вода нахо­дится одновременно в трех состояниях - жидком, твердом и газооб­разном; в ней возникли и развиваются растения и животные, формируются почвы, образуются осадочные горные породы, на определен­ном этапе развития появился человек, сформировалось человечес­кое общество, постоянно взаимодействующее с окружающей ее при­родой.

Географическая оболочка развивается и имеет свои закономер­ности в развитии :

1. Целостность - изменение одного ее компонента неизбежно вызывает изменение всех остальных.

2. Круговорот веществ и энергии . Круговорот веществ обеспечивает многократность одних и тех же процессов и явлений при ограниченном объеме исходного вещества.

3. Ритмичность - повторяемость сходных явлений во времени. Существуют ритмы разной продолжительности - суточные, годовые (сезонные), внутривековые.

4. Зональность - закономерное изменение всех компонентов географической оболочки и самой оболочки по направлению от экватора к полюсам. Основные причины зональ­ности - форма Земли и положение ее относительно Солнца, а пред­посылка - падение солнечных лучей на поверхность под углом, по­степенно уменьшающимся в обе стороны от экватора. Дифферен­циация географической оболочки по зональным признакам выра­жается прежде всего в делении на географические пояса и зоны и высотные пояса и зоны.

В 80-е годы XX в. в геологическую науку было введено понятие «геологическая среда », которая, по мнению ряда ученых, представ­ляет собой часть географической оболочки. Она соответствует са­мой верхней части земной коры и выступает как минеральная ос­нова биосферы. Автор этого термина Е.М.Сергеев (1979) и его последователи под геологической средой понимают верхнюю часть литосферы, находящуюся под воздействием инженерно-хозяй­ственной деятельности человека. Верхней границей геологической сре­ды в таком понимании является поверхность рельефа, характер­ная для конкретной территории. Нижняя граница геологической среды зависит от глубины проникновения человека в толщу зем­ной коры в ходе различных видов его деятельности.



Согласно другой точке зрения, понятие «геологическая среда» должно рассматриваться в более широком плане: геологическая среда - это то пространство, где совершаются геологические процессы. Независимо от места своего возникновения (в глубоких недрах или на земной поверхности) эндогенные и экзогенные процессы, взаимодействующие между собой и с внешними геосферами, совершают в огромнейших мас­штабах разнообразные геологические преобразования. При опре­деленных условиях в геологической среде возникает вся масса гор­ных пород и минералов, существуют органические сообщества, действуют геологические силы, преобразующие лик Земли, воз­никают катастрофические, стихийные геологические явления.

6.2 Атмосфера: строение, происхождение, экологические функции

Атмосфера - это газовая оболочка, не имеющая четко выраженной верхней грани­цы и существующая благодаря гравитационному притяжению Земли. Состав у поверхности Земли следующий: азот - 78,1 %, кислород - 20,95 %, аргон - 0,93 % и в незначительных долях процента углекислый газ, водород, ге­лий, неон и другие газы. На высоте 20-25 км расположен слой озона, который предохра­няет живые организмы от коротковолнового (ультрафиолетового) сол­нечного излучения, пагубно воздействующего на живые организмы.

По резкой смене температур в атмосфере выделяют несколько слоев (сфер). Границы между ними носят название пауз (тропопау­за, стратопауза, мезопауза). В самом нижнем слое - тропосфере - темпе­ратура по мере повышения высоты от земной поверхности падает до -55 °С у полюса и -75 °С у экватора. В ней сосредоточено 4/5 всей массы атмосферы. Она богата азотом и кислородом, насыщена па­рами воды и углекислым газом. Здесь протекают важные погодные процессы и образуются облака. Температура в тропосфере падает с высотой в среднем на 6 °С на каждый километр. Тропосфера про­стирается до высоты 12-15 км и отделяется от стратосферы тро­попаузой.

В стратосфере происходит резкое повышение температуры, до­стигающее 0 °С на высоте 55 км, где проходит стратопауза. В стра­тосфере количество азота и кислорода уменьшается, а содержание водорода, гелия и других легких газов увеличивается. В ней располагается озоновый слой.

Следующий слой атмосферы - мезосфера - располагается в интервале 55 -95 км над поверхностью Земли. В ней продолжается падение температуры с увеличением высоты и достигает -70, -80 °С в мезопаузе.

В термосфере температура повышается, достигая на вы­соте 400 км 1200 0С. Ее нередко называют ионосферой, так как мо­лекулы газов ионизированы космическим излучением, т. е. лише­ны верхних электронов и поэтому обладают положительным заря­дом. Как и любой ионизированный газ, воздух в термосфере хоро­шо проводит электричество. К тому же термосфера обладает заме­чательным свойством - отражает радиоволны, что делает возмож­ной дальнюю связь на Земле.

Выше термосферы располагается экзосфера , представляющая собой переходную область между атмосферой и межпланетным пространством. Характерными ее особенностями являются преоб­ладание газов в атомарном состоянии и очень малая плотность. Здесь наиболее легкие газы покидают атмосферу и рассеиваются в космическом пространстве.

Современная атмосфера представляет собой результат длитель­ного эволюционного развития. Она возникла в результате совмест­ных действий геологических факторов и жизнедеятельности орга­низмов. Первичная атмосфера (протоатмосфера ) на самой ранней протопланетной стадии, т.е. старше чем 4,2 млрд. лет, мог­ла состоять из смеси метана, аммиака и углекислого газа. В резуль­тате дегазации мантии и протекающих на земной поверхности ак­тивных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СО 2 и СО, серы и ее соедине­ний, а также сильных галогенных кислот - НСl, HF, HI и борной кислоты, которые дополнялись находившимися в атмосфере мета­ном, аммиаком, водородом, аргоном и некоторыми другими бла­городными газами. Эта первичная атмосфера была чрезвычайно тонкой.

С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнеч­ных лучей стал трансформироваться. Привело это к разложению метана на водород и углекислоту, аммиака - на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, кото­рый медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности синезеленых водорослей в процессе фотосин­теза стал вырабатываться кислород, который, однако, в начале в основном расходовался на окисление атмосферных газов, а затем горных пород. При этом аммиак, окислившийся до молекуляр­ного азота, стал интенсивно накапливаться в атмосфере. Метан и оксид углерода окислялись до угле­кислоты. Сера и сероводород окислялись до SO 2 и SO 3 , которые вследствие своей высокой подвижности и легкости быстро удали­лись из атмосферы. Таким образом, атмосфера из восстановитель­ной , какой она была в архее и раннем протерозое, постепенно превращалась в окислительную .

Углекислый газ поступал в атмосферу как вследствие окисле­ния метана, так и в результате дегазации мантии и выветривания горных пород. Значительная часть углекислого газа из атмос­феры растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформирова­ны мощнейшие толщи хемогенных и органогенных карбонатов.

Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходо­вался на окислительные процессы. Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Третьим – процессы фотосинтеза. Стабилизация содержания кисло­рода в атмосфере произошла с того момента, когда растения выш­ли на сушу, - примерно 450 млн. лет назад.

Экологические функции атмосферы заключаются в обеспече­нии условий:

Жизнедеятельности организмов;

Функционирования гидросферы, литосферы и почвы;

Формирования климата;

Возникновения экстремальных явлений и стихийных бедствий;

Развития человечества.

Наряду с экологическими атмосфера обладает и геологиче­скими функциями . Геологическая роль атмосферы за­ключается в том, что ее строение, элементарный состав, состоя­ние и взаимодействие с литосферой, почвенным покровом, гид­росферой, равно как и протекающие в ней процессы, определя­ются скоростями и масштабностью воздействия на поверхност­ную часть литосферы физико-химических факторов, которые оп­ределяют интенсивность и скорость воздействия агентов выветривания, эрозии, транспортировки и аккумуляции осадочного материала. Атмосфера - важный источник веществ для формирования почв, горных пород и полезных ископаемых. Атмосфера не только яв­ляется преобразователем солнечной энергии, но и одновременно служит источником строительного материала (оксида углерода) для живых организмов.

6.3 Гидросфера: строение, происхождение, экологические функции

Под гидросферой подразумевают поверхностную оболочку, состоящую из воды морей и океанов, поверхностных водоемов суши, временных и постоянных водото­ков, твердой воды в виде снега и льда. Наряду с поверхностной существует и подземная гидросфера, к которой относятся грунто­вые и подземные, в том числе артезианские воды.

Океаны и моря покрывают почти 71 % поверхности Земли, а вместе с водными объектами суши, к которым относятся ледни­ки, озера, водохранилища, болота, пруды, водой покрыто почти 3/4 земной поверхности. Высокая теплоемкость воды и зна­чительная потенциальная энергия ее многочисленных фазовых пе­реходов вместе с огромной площадью зеркала воды имеют боль­шое значение для теплового и водного режимов Земли. Гидросфе­ра вместе с атмосферой являются решающим фактором в почво­образовании и формировании растительного покрова Земли и, сле­довательно, обусловливают ландшафтный облик планеты. Ми­ровой океан является глобальным аккумулятором теплоты . Он транс­формирует солнечную энергию, аккумулирует ее, а при необхо­димости, медленно охлаждаясь, отдает часть теплоты в атмосферу. Таким образом, гидросфера играет важнейшую и весьма неодноз­начную роль в терморегуляции планеты .

Экологические функции Мирового океана вытекают из его взаи­модействия с атмосферой и верхней частью литосферы, которое приводит к широкому газообмену, способствует возникновению климата и погодных условий, обусловливает распределение тем­пературы, солености и плотности Мирового океана, вызывает по­верхностную и глубинную гидродинамику. Все это играет ведущую роль в распределении биоты и обусловливает жизнедеятельность организмов, транспортировку и аккумуляцию вещества.

Геологическая роль гидросферы состоит в том, что она как один из главнейших экзогенных факторов преобразует земную поверх­ность, участвует в формировании рельефа, переносит во взвешен­ном и растворенном состоянии вещества и химические соедине­ния и участвует в аккумуляции осадочного материала.

Экологические функции гидросферы обеспечиваются непрерывной циркуляцией воды . Ее перемещение происходит в результате механического движе­ния - потоки воды в реках, течения в толще океана; в результате изменения фазового состава - вода испаряется и попадает в атмо­сферу посредством диффузионного и конвективного потоков. Последние характерны для почв и горных пород. В северных рай­онах наблюдается очень редкий способ передвижения воды путем возгонки. Снег (твердая фаза воды), испаряясь, сразу превращает­ся в пар и попадает в атмосферу. Таким образом, происходит не­прерывный замкнутый процесс циркуляции воды на Земле, име­нуемый круговоротом. Различают малый, большой и входящий в него внутриматериковый круговороты.

Вода, испарившаяся с поверхности океана, большей частью конденсируется и возвращается обратно в виде атмосферных осадков (малый, или океанический, круговорот ) и частично перено­сится воздушными течениями на сушу. Атмосферные осадки, выпавшие на сушу, просачиваясь в почву и зону аэрации, создают запасы почвенной влаги. Проникшие глубже атмосферные осадки образуют подземные воды: грунтовые, пластовые и воды глубоких горизонтов. Часть атмосферных осадков стекает по земной поверх­ности, образуя ручьи и реки, а остальная часть снова испаряется. В конце концов, вода, принесенная воздушными течениями на сушу, снова достигает океана, завершая большой круговорот воды на земном шаре. Из большого круговорота может быть выделен еще местный, или внутриматериковый, круговорот, при котором, вода, испарившаяся с поверхности суши, вновь попадает на сушу в виде атмосферных осадков

Представления о происхождении гидросферы основываются на существовании следующих источников воды: дегазации расплавленной магмы, выбросов воды в виде пара вулканами и «черными» курильщиками. Многое зависело от состава первичного вещества, которое образовало праЗемлю. Среди веществ, сложивших нашу планету, помимо вещества типа метеоритного должно было быть и вещество типа кометного, т.е. содержащее лед, металлы и органику. Другими словами, первичная Земля уже имела достаточное количество воды в виде льда. Чисто кометный вариант происхождения океанов пока не имеет достаточных оснований, так как в существующем океане слишком много следов дегазации недр Земли.