Перемножение чисел с разными степенями и основаниями. Правила умножения степеней с разным основанием. Возведение в степень произведения

I. Произведение степеней с одинаковыми основаниями.

Произведение двух степеней с одинаковыми основаниями всегда можно представить в виде степени с основанием х.

По определению степени х 7 есть произведение семи множителей, каждый из которых равен х, а х 9 – произведение девяти таких же множителей. Следовательно, х 7 · х 9 равно произведению 7 + 9 множителей. Каждый из которых равен х, то есть

х 7 · х 9 = х 7+9 = х 16

Получается, если основание степени а – произвольное число, а m и n – любые натуральные числа, то верно равенство:

a m · a n = a m + n

Это равенство выражает одно из свойств степени.

Произведение двух степеней с одинаковыми основаниями равно степени с тем же основанием и показателем, равным сумме показателей этих степеней.

Это свойство имеет место и в случаях, когда число множителей больше двух.

Например, в случае трёх множителей имеем:

a m · a n · a k = (a m · a n)a k = a m+n · a k = a m+n+k

При выполнении преобразований удобно пользоваться правилом: при умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

Рассмотрим примеры.

Пример 1.

х 6 · х 5 = х 6+5 = х 11

Пример 2.

а 7 · а -8 = а -1

Пример 3.

6 1.7 · 6 - 0.9 = 6 1.7+(- 0.9) = 6 1.7 - 0.9 = 6 0.8

II. Частное степеней с одинаковыми основаниями.

Частное двух степеней с одинаковыми показателями всегда можно представить в виде степени с тем же основанием.

Рассмотрим примеры.

Пример 1 . Частное х 17: х 5 можно представить виде степени с основанием х:

х 17: х 5 = х 12 ,

так как по определению частного и на основании свойства степени х 5 · х 12 = х 17 . Показатель степени частного (число 12) равен разности показателей делимого и делителя (17 – 5):

х 17: х 5 = х 17-5

Пример 2.

8 16: 8 12 = 8 16-12 = 8 4

Пример 3.

а -8: а 6 = а -8-6 = а -14

Пример 4.

b 5: b -4 = b 5-(-4) = b 9

Пример 5.

9 1.5: 9 - 0.5 = 9 1.5 - (- 0.5) = 9 1.5 + 0.5 = 9 2

При выполнении преобразований удобно пользоваться правилом: при делении степеней с одинаковыми основаниями основания оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Пример 6.

а 4: а 4 = а 4-4 = а 0

Значение выражения а 0 при всяком а ≠ 0 равно 1.

III. Возведение степени в степень.

Пусть требуется седьмую степень выражения а 2 представить в виде степени с основанием а.

По определению степени (а 2) 7 есть произведение семи множителей, каждый из которых равен а 2 , то есть

(а 2) 7 = а 2 · а 2 · а 2 × а 2 · а 2 · а 2 · а 2 .

Применяя свойство степени, получим:

а 2 · а 2 · а 2 · а 2 · а 2 · а 2 · а 2 = а 2+2+2+2+2+2+2 = a 2·7 .

Получается, (а 2) 7 = а 2·7 = а 14 .

При возведении степени в степень основание оставляют тем же, а показатели перемножают:

(а m) n = а mn .

Рассмотрим примеры.

Пример 1.

(4 3) 4 = 4 3·4 = 4 12

Пример 2.

((-2) 2) 5 = (-2) 10 = 1024

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


После того как определена степень числа , логично поговорить про свойства степени . В этой статье мы дадим основные свойства степени числа, при этом затронем все возможные показатели степени. Здесь же мы приведем доказательства всех свойств степени, а также покажем, как применяются эти свойства при решении примеров.

Навигация по странице.

Свойства степеней с натуральными показателями

По определению степени с натуральным показателем степень a n представляет собой произведение n множителей, каждый из которых равен a . Отталкиваясь от этого определения, а также используя свойства умножения действительных чисел , можно получить и обосновать следующие свойства степени с натуральным показателем :

  1. основное свойство степени a m ·a n =a m+n , его обобщение ;
  2. свойство частного степеней с одинаковыми основаниями a m:a n =a m−n ;
  3. свойство степени произведения (a·b) n =a n ·b n , его расширение ;
  4. свойство частного в натуральной степени (a:b) n =a n:b n ;
  5. возведение степени в степень (a m) n =a m·n , его обобщение (((a n 1) n 2) …) n k =a n 1 ·n 2 ·…·n k ;
  6. сравнение степени с нулем:
    • если a>0 , то a n >0 для любого натурального n ;
    • если a=0 , то a n =0 ;
    • если a<0 и показатель степени является четным числом 2·m , то a 2·m >0 , если a<0 и показатель степени есть нечетное число 2·m−1 , то a 2·m−1 <0 ;
  7. если a и b – положительные числа и a
  8. если m и n такие натуральные числа, что m>n , то при 00 справедливо неравенство a m >a n .

Сразу заметим, что все записанные равенства являются тождественными при соблюдении указанных условий, и их правые и левые части можно поменять местами. Например, основное свойство дроби a m ·a n =a m+n при упрощении выражений часто применяется в виде a m+n =a m ·a n .

Теперь рассмотрим каждое из них подробно.

    Начнем со свойства произведения двух степеней с одинаковыми основаниями, которое называют основным свойством степени : для любого действительного числа a и любых натуральных чисел m и n справедливо равенство a m ·a n =a m+n .

    Докажем основное свойство степени. По определению степени с натуральным показателем произведение степеней с одинаковыми основаниями вида a m ·a n можно записать как произведение . В силу свойств умножения полученное выражение можно записать как , а это произведение есть степень числа a с натуральным показателем m+n , то есть, a m+n . На этом доказательство завершено.

    Приведем пример, подтверждающий основное свойство степени. Возьмем степени с одинаковыми основаниями 2 и натуральными степенями 2 и 3 , по основному свойству степени можно записать равенство 2 2 ·2 3 =2 2+3 =2 5 . Проверим его справедливость, для чего вычислим значения выражений 2 2 ·2 3 и 2 5 . Выполняя возведение в степень , имеем 2 2 ·2 3 =(2·2)·(2·2·2)=4·8=32 и 2 5 =2·2·2·2·2=32 , так как получаются равные значения, то равенство 2 2 ·2 3 =2 5 - верное, и оно подтверждает основное свойство степени.

    Основное свойство степени на базе свойств умножения можно обобщить на произведение трех и большего числа степеней с одинаковыми основаниями и натуральными показателями. Так для любого количества k натуральных чисел n 1 , n 2 , …, n k справедливо равенство a n 1 ·a n 2 ·…·a n k =a n 1 +n 2 +…+n k .

    Например, (2,1) 3 ·(2,1) 3 ·(2,1) 4 ·(2,1) 7 = (2,1) 3+3+4+7 =(2,1) 17 .

    Можно переходить к следующему свойству степеней с натуральным показателем – свойству частного степеней с одинаковыми основаниями : для любого отличного от нуля действительного числа a и произвольных натуральных чисел m и n , удовлетворяющих условию m>n , справедливо равенство a m:a n =a m−n .

    Прежде чем привести доказательство этого свойства, обговорим смысл дополнительных условий в формулировке. Условие a≠0 необходимо для того, чтобы избежать деления на нуль, так как 0 n =0 , а при знакомстве с делением мы условились, что на нуль делить нельзя. Условие m>n вводится для того, чтобы мы не выходили за рамки натуральных показателей степени. Действительно, при m>n показатель степени a m−n является натуральным числом, в противном случае он будет либо нулем (что происходит при m−n ), либо отрицательным числом (что происходит при m

    Доказательство. Основное свойство дроби позволяет записать равенство a m−n ·a n =a (m−n)+n =a m . Из полученного равенства a m−n ·a n =a m и из следует, что a m−n является частным степеней a m и a n . Этим доказано свойство частного степеней с одинаковыми основаниями.

    Приведем пример. Возьмем две степени с одинаковыми основаниями π и натуральными показателями 5 и 2 , рассмотренному свойству степени отвечает равенство π 5:π 2 =π 5−3 =π 3 .

    Теперь рассмотрим свойство степени произведения : натуральная степень n произведения двух любых действительных чисел a и b равна произведению степеней a n и b n , то есть, (a·b) n =a n ·b n .

    Действительно, по определению степени с натуральным показателем имеем . Последнее произведение на основании свойств умножения можно переписать как , что равно a n ·b n .

    Приведем пример: .

    Данное свойство распространяется на степень произведения трех и большего количества множителей. То есть, свойство натуральной степени n произведения k множителей записывается как (a 1 ·a 2 ·…·a k) n =a 1 n ·a 2 n ·…·a k n .

    Для наглядности покажем это свойство на примере. Для произведения трех множителей в степени 7 имеем .

    Следующее свойство представляет собой свойство частного в натуральной степени : частное действительных чисел a и b , b≠0 в натуральной степени n равно частному степеней a n и b n , то есть, (a:b) n =a n:b n .

    Доказательство можно провести, используя предыдущее свойство. Так (a:b) n ·b n =((a:b)·b) n =a n , а из равенства (a:b) n ·b n =a n следует, что (a:b) n является частным от деления a n на b n .

    Запишем это свойство на примере конкретных чисел: .

    Теперь озвучим свойство возведения степени в степень : для любого действительного числа a и любых натуральных чисел m и n степень a m в степени n равна степени числа a с показателем m·n , то есть, (a m) n =a m·n .

    Например, (5 2) 3 =5 2·3 =5 6 .

    Доказательством свойства степени в степени является следующая цепочка равенств: .

    Рассмотренное свойство можно распространить на степень в степени в степени и т.д. Например, для любых натуральных чисел p , q , r и s справедливо равенство . Для большей ясности приведем пример с конкретными числами: (((5,2) 3) 2) 5 =(5,2) 3+2+5 =(5,2) 10 .

    Осталось остановиться на свойствах сравнения степеней с натуральным показателем.

    Начнем с доказательства свойства сравнения нуля и степени с натуральным показателем.

    Для начала обоснуем, что a n >0 при любом a>0 .

    Произведение двух положительных чисел является положительным числом, что следует из определения умножения. Этот факт и свойства умножения позволяют утверждать, что результат умножения любого числа положительных чисел также будет положительным числом. А степень числа a с натуральным показателем n по определению является произведением n множителей, каждый из которых равен a . Эти рассуждения позволяют утверждать, что для любого положительного основания a степень a n есть положительное число. В силу доказанного свойства 3 5 >0 , (0,00201) 2 >0 и .

    Достаточно очевидно, что для любого натурального n при a=0 степень a n есть нуль. Действительно, 0 n =0·0·…·0=0 . К примеру, 0 3 =0 и 0 762 =0 .

    Переходим к отрицательным основаниям степени.

    Начнем со случая, когда показатель степени является четным числом, обозначим его как 2·m , где m - натуральное. Тогда . По каждое из произведений вида a·a равно произведению модулей чисел a и a , значит, является положительным числом. Следовательно, положительным будет и произведение и степень a 2·m . Приведем примеры: (−6) 4 >0 , (−2,2) 12 >0 и .

    Наконец, когда основание степени a является отрицательным числом, а показатель степени есть нечетное число 2·m−1 , то . Все произведения a·a являются положительными числами, произведение этих положительных чисел также положительно, а его умножение на оставшееся отрицательное число a дает в итоге отрицательное число. В силу этого свойства (−5) 3 <0 , (−0,003) 17 <0 и .

    Переходим к свойству сравнения степеней с одинаковыми натуральными показателями, которое имеет следующую формулировку: из двух степеней с одинаковыми натуральными показателями n меньше та, основание которой меньше, а больше та, основание которой больше. Докажем его.

    Неравенство a n свойств неравенств справедливо и доказываемое неравенство вида a n (2,2) 7 и .

    Осталось доказать последнее из перечисленных свойств степеней с натуральными показателями. Сформулируем его. Из двух степеней с натуральными показателями и одинаковыми положительными основаниями, меньшими единицы, больше та степень, показатель которой меньше; а из двух степеней с натуральными показателями и одинаковыми основаниями, большими единицы, больше та степень, показатель которой больше. Переходим к доказательству этого свойства.

    Докажем, что при m>n и 00 в силу исходного условия m>n , откуда следует, что при 0

    Осталось доказать вторую часть свойства. Докажем, что при m>n и a>1 справедливо a m >a n . Разность a m −a n после вынесения a n за скобки принимает вид a n ·(a m−n −1) . Это произведение положительно, так как при a>1 степень a n есть положительное число, и разность a m−n −1 есть положительное число, так как m−n>0 в силу начального условия, и при a>1 степень a m−n больше единицы. Следовательно, a m −a n >0 и a m >a n , что и требовалось доказать. Иллюстрацией этого свойства служит неравенство 3 7 >3 2 .

Свойства степеней с целыми показателями

Так как целые положительные числа есть натуральные числа, то все свойства степеней с целыми положительными показателями в точности совпадают со свойствами степеней с натуральными показателями, перечисленными и доказанными в предыдущем пункте.

Степень с целым отрицательным показателем , а также степень с нулевым показателем мы определяли так, чтобы оставались справедливыми все свойства степеней с натуральными показателями, выражаемые равенствами. Поэтому, все эти свойства справедливы и для нулевых показателей степени, и для отрицательных показателей, при этом, конечно, основания степеней отличны от нуля.

Итак, для любых действительных и отличных от нуля чисел a и b , а также любых целых чисел m и n справедливы следующие свойства степеней с целыми показателями :

  1. a m ·a n =a m+n ;
  2. a m:a n =a m−n ;
  3. (a·b) n =a n ·b n ;
  4. (a:b) n =a n:b n ;
  5. (a m) n =a m·n ;
  6. если n – целое положительное число, a и b – положительные числа, причем ab −n ;
  7. если m и n – целые числа, причем m>n , то при 01 выполняется неравенство a m >a n .

При a=0 степени a m и a n имеют смысл лишь когда и m , и n положительные целые числа, то есть, натуральные числа. Таким образом, только что записанные свойства также справедливы для случаев, когда a=0 , а числа m и n – целые положительные.

Доказать каждое из этих свойств не составляет труда, для этого достаточно использовать определения степени с натуральным и целым показателем, а также свойства действий с действительными числами. Для примера докажем, что свойство степени в степени выполняется как для целых положительных чисел, так и для целых неположительных чисел. Для этого нужно показать, что если p есть нуль или натуральное число и q есть нуль или натуральное число, то справедливы равенства (a p) q =a p·q , (a −p) q =a (−p)·q , (a p) −q =a p·(−q) и (a −p) −q =a (−p)·(−q) . Сделаем это.

Для положительных p и q равенство (a p) q =a p·q доказано в предыдущем пункте. Если p=0 , то имеем (a 0) q =1 q =1 и a 0·q =a 0 =1 , откуда (a 0) q =a 0·q . Аналогично, если q=0 , то (a p) 0 =1 и a p·0 =a 0 =1 , откуда (a p) 0 =a p·0 . Если же и p=0 и q=0 , то (a 0) 0 =1 0 =1 и a 0·0 =a 0 =1 , откуда (a 0) 0 =a 0·0 .

Теперь докажем, что (a −p) q =a (−p)·q . По определению степени с целым отрицательным показателем , тогда . По свойству частного в степени имеем . Так как 1 p =1·1·…·1=1 и , то . Последнее выражение по определению является степенью вида a −(p·q) , которую в силу правил умножения можно записать как a (−p)·q .

Аналогично .

И .

По такому же принципу можно доказать все остальные свойства степени с целым показателем, записанные в виде равенств.

В предпоследнем из записанных свойств стоит остановиться на доказательстве неравенства a −n >b −n , которое справедливо для любого целого отрицательного −n и любых положительных a и b , для которых выполняется условие a. Так как по условию a0 . Произведение a n ·b n тоже положительно как произведение положительных чисел a n и b n . Тогда полученная дробь положительна как частное положительных чисел b n −a n и a n ·b n . Следовательно, откуда a −n >b −n , что и требовалось доказать.

Последнее свойство степеней с целыми показателями доказывается так же, как аналогичное свойство степеней с натуральными показателями.

Свойства степеней с рациональными показателями

Степень с дробным показателем мы определяли, распространяя на нее свойства степени с целым показателем. Иными словами, степени с дробными показателями обладают теми же свойствами, что и степени с целыми показателями. А именно:

Доказательство свойств степеней с дробными показателями базируется на определении степени с дробным показателем, на и на свойствах степени с целым показателем. Приведем доказательства.

По определению степени с дробным показателем и , тогда . Свойства арифметического корня позволяют нам записать следующие равенства . Дальше, используя свойство степени с целым показателем, получаем , откуда по определению степени с дробным показателем имеем , а показатель полученной степени можно преобразовать так: . На этом доказательство завершено.

Абсолютно аналогично доказывается второе свойство степеней с дробными показателями:

По схожим принципам доказываются и остальные равенства:

Переходим к доказательству следующего свойства. Докажем, что для любых положительных a и b , a b p . Запишем рациональное число p как m/n , где m – целое число, а n – натуральное. Условиям p<0 и p>0 в этом случае будут эквивалентны условия m<0 и m>0 соответственно. При m>0 и a

Аналогично, при m<0 имеем a m >b m , откуда , то есть, и a p >b p .

Осталось доказать последнее из перечисленных свойств. Докажем, что для рациональных чисел p и q , p>q при 00 – неравенство a p >a q . Мы всегда можем привести к общему знаменателю рациональные числа p и q , пусть при этом мы получим обыкновенные дроби и , где m 1 и m 2 – целые числа, а n - натуральное. При этом условию p>q будет соответствовать условие m 1 >m 2 , что следует из . Тогда по свойству сравнения степеней с одинаковыми основаниями и натуральными показателями при 01 – неравенство a m 1 >a m 2 . Эти неравенства по свойствам корней можно переписать соответственно как и . А определение степени с рациональным показателем позволяет перейти к неравенствам и соответственно. Отсюда делаем окончательный вывод: при p>q и 00 – неравенство a p >a q .

Свойства степеней с иррациональными показателями

Из того, как определяется степень с иррациональным показателем , можно заключить, что она обладает всеми свойствами степеней с рациональными показателями. Так для любых a>0 , b>0 и иррациональных чисел p и q справедливы следующие свойства степеней с иррациональными показателями :

  1. a p ·a q =a p+q ;
  2. a p:a q =a p−q ;
  3. (a·b) p =a p ·b p ;
  4. (a:b) p =a p:b p ;
  5. (a p) q =a p·q ;
  6. для любых положительных чисел a и b , a0 справедливо неравенство a p b p ;
  7. для иррациональных чисел p и q , p>q при 00 – неравенство a p >a q .

Отсюда можно сделать вывод, что степени с любыми действительными показателями p и q при a>0 обладают этими же свойствами.

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

Напоминаем, что в данном уроке разбираются свойства степеней с натуральными показателями и нулём. Степени с рациональными показателями и их свойства будут рассмотрены в уроках для 8 классов.

Степень с натуральным показателем обладает несколькими важными свойствами, которые позволяют упрощать вычисления в примерах со степенями.

Свойство № 1
Произведение степеней

Запомните!

При умножении степеней с одинаковыми основаниями основание остаётся без изменений, а показатели степеней складываются.

a m · a n = a m + n , где «a » — любое число, а «m », «n » — любые натуральные числа.

Данное свойство степеней также действует на произведение трёх и более степеней.

  • Упростить выражение.
    b · b 2 · b 3 · b 4 · b 5 = b 1 + 2 + 3 + 4 + 5 = b 15
  • Представить в виде степени.
    6 15 · 36 = 6 15 · 6 2 = 6 15 · 6 2 = 6 17
  • Представить в виде степени.
    (0,8) 3 · (0,8) 12 = (0,8) 3 + 12 = (0,8) 15

Важно!

Обратите внимание, что в указанном свойстве речь шла только об умножении степеней с одинаковыми основаниями . Оно не относится к их сложению.

Нельзя заменять сумму (3 3 + 3 2) на 3 5 . Это понятно, если
посчитать (3 3 + 3 2) = (27 + 9) = 36 , а 3 5 = 243

Свойство № 2
Частное степеней

Запомните!

При делении степеней с одинаковыми основаниями основание остаётся без изменений, а из показателя степени делимого вычитают показатель степени делителя.

= 11 3 − 2 · 4 2 − 1 = 11 · 4 = 44
  • Пример. Решить уравнение. Используем свойство частного степеней.
    3 8: t = 3 4

    T = 3 8 − 4

    Ответ: t = 3 4 = 81
  • Пользуясь свойствами № 1 и № 2, можно легко упрощать выражения и производить вычисления.

    • Пример. Упростить выражение.
      4 5m + 6 · 4 m + 2: 4 4m + 3 = 4 5m + 6 + m + 2: 4 4m + 3 = 4 6m + 8 − 4m − 3 = 4 2m + 5
    • Пример. Найти значение выражения, используя свойства степени.
      = = = 2 9 + 2
      2 5
      = 2 11
      2 5
      = 2 11 − 5 = 2 6 = 64

      Важно!

      Обратите внимание, что в свойстве 2 речь шла только о делении степеней с одинаковыми основаниями.

      Нельзя заменять разность (4 3 −4 2) на 4 1 . Это понятно, если посчитать (4 3 −4 2) = (64 − 16) = 48 , а 4 1 = 4

      Будьте внимательны!

      Свойство № 3
      Возведение степени в степень

      Запомните!

      При возведении степени в степень основание степени остаётся без изменения, а показатели степеней перемножаются.

      (a n) m = a n · m , где «a » — любое число, а «m », «n » — любые натуральные числа.


      Свойства 4
      Степень произведения

      Запомните!

      При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

      (a · b) n = a n · b n , где «a », «b » — любые рациональные числа; «n » — любое натуральное число.

      • Пример 1.
        (6 · a 2 · b 3 · c) 2 = 6 2 · a 2 · 2 · b 3 · 2 · с 1 · 2 = 36 a 4 · b 6 · с 2
      • Пример 2.
        (−x 2 · y) 6 = ((−1) 6 · x 2 · 6 · y 1 · 6) = x 12 · y 6

      Важно!

      Обратите внимание, что свойство № 4, как и другие свойства степеней, применяют и в обратном порядке.

      (a n · b n)= (a · b) n

      То есть, чтобы перемножить степени с одинаковыми показателями можно перемножить основания, а показатель степени оставить неизменным.

      • Пример. Вычислить.
        2 4 · 5 4 = (2 · 5) 4 = 10 4 = 10 000
      • Пример. Вычислить.
        0,5 16 · 2 16 = (0,5 · 2) 16 = 1

      В более сложных примерах могут встретиться случаи, когда умножение и деление надо выполнить над степенями с разными основаниями и разными показателями. В этом случае советуем поступать следующим образом.

      Например, 4 5 · 3 2 = 4 3 · 4 2 · 3 2 = 4 3 · (4 · 3) 2 = 64 · 12 2 = 64 · 144 = 9216

      Пример возведения в степень десятичной дроби.

      4 21 · (−0,25) 20 = 4 · 4 20 · (−0,25) 20 = 4 · (4 · (−0,25)) 20 = 4 · (−1) 20 = 4 · 1 = 4

      Свойства 5
      Степень частного (дроби)

      Запомните!

      Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

      (a: b) n = a n: b n , где «a », «b » — любые рациональные числа, b ≠ 0, n — любое натуральное число.

      • Пример. Представить выражение в виде частного степеней.
        (5: 3) 12 = 5 12: 3 12

      Напоминаем, что частное можно представить в виде дроби. Поэтому на теме возведение дроби в степень мы остановимся более подробно на следующей странице.

    Основная цель

    Ознакомить учащихся со свойствами степеней с натуральными показателями и научить выполнять действия со степенями.

    Тема “ Степень и её свойства ” включает три вопроса:

    • Определение степени с натуральным показателем.
    • Умножение и деление степеней.
    • Возведение в степень произведения и степени.

    Контрольные вопросы

    1. Сформулируйте определение степени с натуральным показателем, большим 1. Приведите пример.
    2. Сформулируйте определение степени с показателем 1. Приведите пример.
    3. Каков порядок выполнения действий при вычислении значения выражения, содержащего степени?
    4. Сформулируйте основное свойство степени. Приведите пример.
    5. Сформулируйте правило умножения степеней с одинаковыми основаниями. Приведите пример.
    6. Сформулируйте правило деления степеней с одинаковыми основаниями. Приведите пример.
    7. Сформулируйте правило возведения в степень произведения. Приведите пример. Докажите тождество (ab) n = a n b n .
    8. Сформулируйте правило возведения степени в степень. Приведите пример. Докажите тождество (а m) n = а m n .

    Определение степени.

    Степенью числа a с натуральным показателем n , большим 1, называется произведение n множителей, каждый из которых равен а . Степенью числа а с показателем 1 называется само число а .

    Степень с основанием а и показателем n записывается так: а n . Читается “ а в степени n ”; “ n- я степень числа а ”.

    По определению степени:

    а 4 = а а а а

    . . . . . . . . . . . .

    Нахождение значения степени называют возведением в степень .

    1. Примеры возведения в степень:

    3 3 = 3 3 3 = 27

    0 4 = 0 0 0 0 = 0

    (-5) 3 = (-5) (-5) (-5) = -125

    25 ; 0,09 ;

    25 = 5 2 ; 0,09 = (0,3) 2 ; .

    27 ; 0,001 ; 8 .

    27 = 3 3 ; 0,001 = (0,1) 3 ; 8 = 2 3 .

    4. Найти значения выражений:

    а) 3 10 3 = 3 10 10 10 = 3 1000 = 3000

    б) -2 4 + (-3) 2 = 7
    2 4 = 16
    (-3) 2 = 9
    -16 + 9 = 7

    Вариант 1

    а) 0,3 0,3 0,3

    в) b b b b b b b

    г) (-х) (-х) (-х) (-х)

    д) (ab) (ab) (ab)

    2. Представьте в виде квадрата числа:

    3. Представьте в виде куба числа:

    4. Найти значения выражений:

    в) -1 4 + (-2) 3

    г) -4 3 + (-3) 2

    д) 100 - 5 2 4

    Умножение степеней.

    Для любого числа а и произвольных чисел m и n выполняется:

    a m a n = a m + n .

    Доказательство:

    Правило : При умножении степеней с одинаковыми основаниями основания оставляют прежним, а показатели степеней складывают.

    a m a n a k = a m + n a k = a (m + n) + k = a m + n + k

    а) х 5 х 4 = х 5 + 4 = х 9

    б) y y 6 = y 1 y 6 = y 1 + 6 = y 7

    в) b 2 b 5 b 4 = b 2 + 5 + 4 = b 11

    г) 3 4 9 = 3 4 3 2 = 3 6

    д) 0,01 0,1 3 = 0,1 2 0,1 3 = 0,1 5

    а) 2 3 2 = 2 4 = 16

    б) 3 2 3 5 = 3 7 = 2187

    Вариант 1

    1. Представить в виде степени:

    а) х 3 х 4 е) х 2 х 3 х 4

    б) а 6 а 2 ж) 3 3 9

    в) у 4 у з) 7 4 49

    г) а а 8 и) 16 2 7

    д) 2 3 2 4 к) 0,3 3 0,09

    2. Представить в виде степени и найти значение по таблице:

    а) 2 2 2 3 в) 8 2 5

    б) 3 4 3 2 г) 27 243

    Деление степеней.

    Для любого числа а0 и произвольных натуральных чисел m и n, таких, что m>n выполняется:

    a m: a n = a m - n

    Доказательство:

    a m - n a n = a (m - n) + n = a m - n + n = a m

    по определению частного:

    a m: a n = a m - n .

    Правило : При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

    Определение: Степень числа а, не равного нулю, с нулевым показателем равна единице :

    т.к. а n: a n = 1 при а0 .

    а) х 4:х 2 = х 4 - 2 = х 2

    б) у 8:у 3 = у 8 - 3 = у 5

    в) а 7:а = а 7:а 1 = а 7 - 1 = а 6

    г) с 5:с 0 = с 5:1 = с 5

    а) 5 7:5 5 = 5 2 = 25

    б) 10 20:10 17 = 10 3 = 1000

    в)

    г)

    д)

    Вариант 1

    1. Представьте в виде степени частное:

    2. Найдите значения выражений:

    Возведение в степень произведения.

    Для любых а и b и произвольного натурального числа n:

    (ab) n = a n b n

    Доказательство:

    По определению степени

    (ab) n =

    Сгруппировав отдельно множители а и множители b, получим:

    =

    Доказанное свойство степени произведения распространяется на степень произведения трех и более множителей.

    Например:

    (a b c) n = a n b n c n ;

    (a b c d) n = a n b n c n d n .

    Правило : При возведении в степень произведения возводят в эту степень каждый множитель и результат перемножают.

    1. Возвести в степень:

    а) (a b) 4 = a 4 b 4

    б) (2 х у) 3 =2 3 х 3 у 3 = 8 х 3 у 3

    в) (3 а) 4 = 3 4 а 4 = 81 а 4

    г) (-5 у) 3 = (-5) 3 у 3 = -125 у 3

    д) (-0,2 х у) 2 = (-0,2) 2 х 2 у 2 = 0,04 х 2 у 2

    е) (-3 a b c) 4 = (-3) 4 a 4 b 4 c 4 = 81 a 4 b 4 c 4

    2. Найти значение выражения:

    а) (2 10) 4 = 2 4 10 4 = 16 1000 = 16000

    б) (3 5 20) 2 = 3 2 100 2 = 9 10000= 90000

    в) 2 4 5 4 = (2 5) 4 = 10 4 = 10000

    г) 0,25 11 4 11 = (0,25 4) 11 = 1 11 = 1

    д)

    Вариант 1

    1. Возвести в степень:

    б) (2 а с) 4

    д) (-0,1 х у) 3

    2. Найти значение выражения:

    б) (5 7 20) 2

    Возведение в степень степени.

    Для любого числа а и произвольных натуральных чисел m и n:

    (а m) n = а m n

    Доказательство:

    По определению степени

    (а m) n =

    Правило: При возведении степени в степень основание оставляют тем же, а показатели перемножают .

    1. Возвести в степень:

    (а 3) 2 = а 6 (х 5) 4 = х 20

    (у 5) 2 = у 10 (b 3) 3 = b 9

    2. Упростите выражения:

    а) а 3 (а 2) 5 = а 3 а 10 = а 13

    б) (b 3) 2 b 7 = b 6 b 7 = b 13

    в) (х 3) 2 (х 2) 4 = х 6 х 8 = х 14

    г) (у у 7) 3 = (у 8) 3 = у 24

    а)

    б)

    Вариант 1

    1. Возвести в степень:

    а) (а 4) 2 б) (х 4) 5

    в) (у 3) 2 г) (b 4) 4

    2. Упростите выражения:

    а) а 4 (а 3) 2

    б) (b 4) 3 b 5+

    в) (х 2) 4 (х 4) 3

    г) (у у 9) 2

    3. Найдите значение выражений:

    Приложение

    Определение степени.

    Вариант 2

    1ю Запишите произведение в виде степени:

    а) 0,4 0,4 0,4

    в) а а а а а а а а

    г) (-у) (-у) (-у) (-у)

    д) (bс) (bс) (bс)

    2. Представьте в виде квадрата числа:

    3. Представьте в виде куба числа:

    4. Найти значения выражений:

    в) -1 3 + (-2) 4

    г) -6 2 + (-3) 2

    д) 4 5 2 – 100

    Вариант 3

    1. Запишите произведение в виде степени:

    а) 0,5 0,5 0,5

    в) с с с с с с с с с

    г) (-х) (-х) (-х) (-х)

    д) (ab) (ab) (ab)

    2. Представьте в виде квадрата числа: 100 ; 0,49 ; .

    3. Представьте в виде куба числа:

    4. Найти значения выражений:

    в) -1 5 + (-3) 2

    г) -5 3 + (-4) 2

    д) 5 4 2 - 100

    Вариант 4

    1. Запишите произведение в виде степени:

    а) 0,7 0,7 0,7

    в) х х х х х х

    г) (-а) (-а) (-а)

    д) (bс) (bс) (bс) (bc)

    2. Представьте в виде квадрата числа:

    3. Представьте в виде куба числа:

    4. Найти значения выражений:

    в) -1 4 + (-3) 3

    г) -3 4 + (-5) 2

    д) 100 - 3 2 5

    Умножение степеней.

    Вариант 2

    1. Представить в виде степени:

    а) х 4 x 5 е) х 3 х 4 х 5

    б) а 7 а 3 ж) 2 3 4

    в) у 5 у з) 4 3 16

    г) а а 7 и) 4 2 5

    д) 2 2 2 5 к) 0,2 3 0,04

    2. Представить в виде степени и найти значение по таблице:

    а) 3 2 3 3 в) 16 2 3

    б) 2 4 2 5 г) 9 81

    Вариант 3

    1. Представить в виде степени:

    а) а 3 а 5 е) у 2 у 4 у 6

    б) х 4 х 7 ж) 3 5 9

    в) b 6 b з) 5 3 25

    г) у у 8 и) 49 7 4

    д) 2 3 2 6 к) 0,3 4 0,27

    2. Представить в виде степени и найти значение по таблице:

    а) 3 3 3 4 в) 27 3 4

    б) 2 4 2 6 г) 16 64

    Вариант 4

    1. Представить в виде степени:

    а) а 6 а 2 е) х 4 х х 6

    б) х 7 х 8 ж) 3 4 27

    в) у 6 у з) 4 3 16

    г) х х 10 и) 36 6 3

    д) 2 4 2 5 к) 0,2 2 0,008

    2. Представить в виде степени и найти значение по таблице:

    а) 2 6 2 3 в) 64 2 4

    б) 3 5 3 2 г) 81 27

    Деление степеней.

    Вариант 2

    1. Представьте в виде степени частное:

    2. Найдите значения выражений:

    Каждая арифметическая операция порою становится слишком громоздкой для записи и её стараются упростить. Когда-то так было и с операцией сложения. Людям было необходимо проводить многократное однотипное сложение, например, посчитать стоимость ста персидских ковров, стоимость которого составляет 3 золотые монеты за каждый. 3+3+3+…+3 = 300. Из-за громоздкости было придумано сократить запись до 3 * 100 = 300. Фактически, запись «три умножить на сто» означает, что нужно взять сто троек и сложить между собой. Умножение прижилось, обрело общую популярность. Но мир не стоит на месте, и в средних веках возникла необходимость проводить многократное однотипное умножение. Вспоминается старая индийская загадка о мудреце, попросившем в награду за выполненную работу пшеничные зёрна в следующем количестве: за первую клетку шахматной доски он просил одно зерно, за вторую – два, третью – четыре, пятую – восемь и так далее. Так появилось первое умножение степеней, ведь количество зёрен было равно двойке в степени номера клетки. К примеру, на последней клетке было бы 2*2*2*…*2 = 2^63 зёрен, что равно числу длиной в 18 знаков, в чём, собственно, и кроется смысл загадки.

    Операция возведения в степень прижилась довольно быстро, также быстро возникла необходимость проводить сложение, вычитание, деление и умножение степеней. Последнее и стоит рассмотреть более подробно. Формулы для сложения степеней просты и легко запоминаются. К тому же, очень легко понять, откуда они берутся, если операцию степени заменить умножением. Но сначала следует разобраться в элементарной терминологии. Выражение a^b (читается «а в степени b») означает, что число a следует умножить само на себя b раз, причём «a» называется основанием степени, а «b» - степенным показателем. Если основания степеней одинаковые, то формулы выводятся совсем просто. Конкретный пример: найти значение выражения 2^3 * 2^4. Чтобы знать, что должно получиться, следует перед началом решения узнать ответ на компьютере. Забив данное выражение в любой онлайн-калькулятор, поисковик, набрав "умножение степеней с разными основаниямии одинаковыми" или математический пакет, на выходе получится 128. Теперь распишем данное выражение: 2^3 = 2*2*2, а 2^4 = 2*2*2*2. Получается, что 2^3 * 2^4 = 2*2*2*2*2*2*2 = 2^7 = 2^(3+4) . Выходит, что произведение степеней с одинаковым основанием равно основанию, возведённому в степень, равную сумме двух предыдущих степеней.

    Можно подумать, что это случайность, но нет: любой другой пример сможет лишь подтвердить данное правило. Таким образом, в общем виде формула выглядит следующим образом: a^n * a^m = a^(n+m) . Также существует правило, что любое число в нулевой степени равно единице. Здесь следует вспомнить правило отрицательных степеней: a^(-n) = 1 / a^n. То есть, если 2^3 = 8, то 2^(-3) = 1/8. Используя это правило можно доказать справедливость равенства a^0 = 1: a^0 = a^(n-n) = a^n * a^(-n) = a^(n) * 1/a^(n) , a^(n) можно сократить и остаётся единица. Отсюда выводится и то правило, что частное степеней с одинаковыми основаниями равно этому основанию в степени, равной частному показателя делимого и делителя: a^n: a^m = a^(n-m) . Пример: упростить выражение 2^3 * 2^5 * 2^(-7) *2^0: 2^(-2) . Умножение является коммутативной операцией, следовательно сначала следует произвести сложение показателей умножения: 2^3 * 2^5 * 2^(-7) *2^0 = 2^(3+5-7+0) = 2^1 =2. Далее следует разобраться с делением на отрицательную степень. Необходимо вычесть показатель делителя из показателя делимого: 2^1: 2^(-2) = 2^(1-(-2)) = 2^(1+2) = 2^3 = 8. Оказывается, операция деления на отрицательную степень тождественна операции умножения на аналогичный положительный показатель. Таким образом, окончательный ответ равен 8.

    Существуют примеры, где имеет место не каноническое умножение степеней. Перемножить степени с разными основаниями очень часто бывает гораздо сложнее, а порой и вообще невозможно. Следует привести несколько примеров различных возможных приёмов. Пример: упростить выражение 3^7 * 9^(-2) * 81^3 * 243^(-2) * 729. Очевидно, имеет место умножение степеней с разными основаниями. Но, следует отметить, что все основания являются различными степенями тройки. 9 = 3^2,1 = 3^4,3 = 3^5,9 = 3^6. Используя правило (a^n) ^m = a^(n*m) , следует переписать выражение в более удобном виде: 3^7 * (3^2) ^(-2) * (3^4) ^3 * (3^5) ^(-2) * 3^6 = 3^7 * 3^(-4) * 3^(12) * 3^(-10) * 3^6 = 3^(7-4+12-10+6) = 3^(11) . Ответ: 3^11. В случаях, когда различные основания, на равные показатели работает правило a^n * b^n = (a*b) ^n. Например, 3^3 * 7^3 = 21^3. В остальном, когда различные основания и показатели, произвести полное умножение нельзя. Иногда можно частично упростить или прибегнуть к помощи вычислительной техники.